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1 Introduction

The National Science Foundation (NSF) Expedition on
Variability-Aware Software for Efficient Computing with
Nanoscale Devices is a five year, multi-university project
started in 2010 to tackle a major challenge facing the com-
puting industry: the over-engineering of systems by chip
designers, with wide error tolerances and guardbands, in
order to accommodate variations in manufactured com-
ponents. Variation has multiple causes, including: imper-
fections in manufacturing and materials; burn-in and life-
time degradation; temperature, altitude and other operat-
ing environment changes; etc. These sources of variability
become more acute as the size of microelectronic compo-
nents decline, use of silicon becomes increasingly prob-
lematic, and therefore new materials are adopted by the
semiconductor industry. Given these trends in variability,
chip and system designers — if they want to retain the same
deterministic interface with software — are forced to en-
gineer systems with orders-of-magnitude greater levels of
error tolerance beyond what is ideal. Ultimately this vari-
ability poses a critical challenge to future advances in com-
puting machines, by counteracting improvement in com-
ponent capabilities that the semiconductor and other com-
puting industries have come to expect.

The Variability Expedition envisions a computing
world where system components — led by proactive soft-
ware — routinely monitor, predict and adapt to the vari-
ability of manufactured systems. The Variability Expedi-
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tion proposes a new class of computing machines that are
adaptive but highly energy efficient. They will continue
working while using components that vary in performance
or grow less reliable over time and across technology gen-
erations. A fluid software-hardware interface will mitigate
the variability of manufactured systems and make ma-
chines robust, reliable and responsive to changing oper-
ating conditions — offering the best hope for perpetuating
the fundamental gains in computing performance at lower
cost of the past 40 years.

The expedition has made contributions across the
gamut of the variability problem, from quantifying and
monitoring variations, to coding schemes for variability-
tolerant systems, to runtime support systems, to tools
and testbeds. Research in the expedition in organized
into five main thrusts: 1) measurement and modeling, 2)
design tools and testing methodologies, 3) architectural
mechanisms, 4) runtime support, and 5) applications and
testbeds. This paper presents a survey of recent results
and contributions of the Variability Expedition, organized
along our major research thrusts.

2 Measurement and modeling

In this thrust we aim to quantify variation in contempo-
rary hardware, and provide means to measure and model
it, both online through circuit mechanisms and software
and mathematical models. Our results show the magni-
tude of power variation in embedded and desktop proces-
sors, memories, and error variations in flash memories.

2.1 Sleep power variations in embedded
class processors

Power consumed in an embedded class microprocessor
chip is broadly classified into active mode and sleep
mode. In one of our first efforts in variability character-
ization [47], we studied the temperature dependence of
sleep mode power consumption in embedded processors.
With shrinking geometries the ratio of sleep mode power
to active mode power has been increasing (as high as 40%
in chips fabricated using 65 nm technology) [39]. This is
due to the inability to turn devices “off” effectively as de-
vice dimensions continue to shrink. Manufacturing spread
in transistor parameters can cause up to 20x variation in
sleep mode power [6] in addition to substantial variation
with supply voltage and temperature. Similar sleep power
spread (about 7x) is also observed in our relatively small
sample set of 15 testchips fabricated using 45 nm technol-
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Figure 1: Cortex-M3 (Atmel SAM3U) sleep power at room
temperature.

ogy. Specifically in context of embedded sensor platforms,
which often are deployed in extreme ambient conditions,
the variation in leakage power during the lifetime of a de-
vice may be substantial.

Toillustrate the magnitude of sleep power variation in
contemporary embedded processors, we measured sleep
as a function of temperature across several instances of At-
mel Cortex-M3 processors. The class of low-end 32-bit pro-
cessors represented by the Cortex M3 is suitable for em-
bedded applications where nodes perform data collection,
aggregation, and inferences in a duty-cycled fashion. The
variations we observed with the SAM3U are comparable to
those found in other similar embedded processors [7].

For our measurements, we used ten identical SAM3U-
EK development boards. These boards feature jumpers
that allow power measurements for different components.
We measured current and voltage on going into the SAM3U
core, with all peripherals except for the real time clock dis-
abled. We used a TestEquity 115F temperature chamber al-
lowing control of ambient temperature with +0.5 °C accu-
racy.

Figure 1shows that the variation in sleep power across
ten instances of SAM3U at room temperature is approxi-
mately 8x. Figure 2 shows the experimental data for sleep
power consumption of the SAM3U instances across a tem-
perature range fitted to an analytic model described in [47],
using minimum mean square error criterion. As expected,
individual processor instances exhibit large sleep power
variations over the temperature range. While change in
sleep power for any individual processor is monotonic, the
magnitudes of variations are different so that relative rank-
ings of different processors change over temperature. Over
a temperature range of 20-60 “C, which is representative
of the temperatures that embedded sensors deployed un-
der unregulated and extreme ambient conditions often
face (e. g. in factories, desert, etc.), total variation across
all instances is 14x.
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Figure 2: Cortex-M3 (Atmel SAM3U) measured and modeled
variability of sleep power with temperature.

2.2 Active power variation in general
purpose processors

We continued our efforts in power variation characteriza-
tion with a study of active power consumption in Intel Core
processors [2]. We measured power consumption for differ-
ent benchmarks with six identical dual-core Intel Core i5-
540M parts that feature both Hyper-Threading and Turbo
Boost technologies. The processor utilizes the Nehalem
architecture (32 nm), supports six sleep states (C-states)
and ten frequencies (P-states) ranging from 1.33 GHz
to 2.53 GHz and has maximum thermal design power
(TDP) of 35 W. Our test setup used two identical develop-
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ment platforms, called Calpella, from Intel Labs which are
highly instrumented with over fifty current sense resistors
to isolate subsystem power. To isolate the CPU power we
combined the measurements from three independent sup-
ply lines feeding different parts of the processor. We ran 19
SPEC CPU 2006 benchmarks on the six test processors.
Figure 3 plots the mean power consumption of each
processor for the different benchmarks. We observe that
for the benchmarks with high variations (bzip2, povray,
soplex) the standard deviation across runs is also high,
and thus, the actual process variation may be lower than
the measurements indicate. While variation across runs
accounts for significant variation across a single instance
of a processor, we observe that the different processors per-
form consistently across benchmarks — e. g. processors P2,
P5 and P6 have relatively high power consumption and P3
has a lower than average power consumption. Across all
processors, variation ranges from 12% to 17%.

2.3 Power variation in memory subsystems

In addition to processors, variations in power consump-
tion are also present in memory subsystems. We tested 22
DDR3 memory modules DIMMs, and found that power us-
age in DRAMs varies with operation type (write, read, and
idle), data (with ones in the data typically costing more
than zeros), and significantly across instances of the same
model and across vendors in models with the same spec-
ification [19]. To perform our characterization, we used
a standard PC platform augmented with a small 0.02 Q) re-
sistor inserted on the V,;,; line in between the DIMM and the
motherboard. A thermal chamber was used to control tem-
perature, and an Agilent 34411A digital multimeter sam-
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Figure 3: Power consumption of six Intel Core i5-540M processors for SPEC CPU 2006 benchmarks with Turbo Boost and Hyper-Threading

disabled, C-States enabled at 2.53 GHz.
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Figure 4: Maximum variations in read, write, and idle power in DDR3
memory DIMMs.

pled the voltage across the resistor at 10 000 samples/sec
to derive power consumption.

We modified Memtest86+, a memory testing utility,
to perform controlled experiments with memory accesses.
We created a write function which wrote memory sequen-
tially with a specified bit pattern, but never read it back.
Similarly, a read function was created which only read
memory sequentially without writing back. Each word lo-
cation in memory could be initialized with an arbitrary
pattern before executing the read test. The bit fade test,
which was originally designed to detect bit errors over
a period of DRAM inactivity, was modified to serve as an
idle power test, with minimal memory usage. As our in-
tent was primarily to measure power variability between
different modules, we used sequential access patterns to
avoid the effects of caches and row buffers. A summary
of the variation found in our experiments is presented in
Figure 4. The figure shows variations for write, read, and
idle operation within DIMMs of the same model, across
different models (with identical specification) of a same
vendor, across different vendors, and overall across all of
our DIMMs. Variations were up to 12.29% and 16.40% for
idle power within a single model and for different mod-
els from the same vendor, respectively. In the scope of
all tested modules, deviations were up to 21.84% in write
power. Unlike in our measurements with processors, tem-
perature had little effect (1-3%) across the =50 °C to 50 °C
range [19].

2.4 Intracell variability in flash memories
As flash technology scales and the storage density in-

creases, data errors become more prevalent. Flash mem-
ories fail in a variety of ways, particularly due to wearout
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with use, where after multiple erase and program cycles
individual cells become unreliable due to charge trapping
in the gate oxide [20]. Flash devices typically offer only
vague guarantees on reliability, e. g., indicating correct op-
eration from 10 000 to 100 000 erase cycles under specific
assumption such as a ten-year “shelf life” for the data, ran-
dom access patterns, and a loosely-specified error correc-
tion scheme. Correct operation of flash devices is further
complicated by the use of multi-level cell technology. In
early generations, each flash memory cell could represent
two voltage levels and thus store a single bit (SLC). The de-
mand for increased storage capacity has created the need
to store more than a single bit per cell by simply represent-
ing more than two voltage levels. TLC (Triple Level Cell)
technologies, for example, can store three bits per cell.
Adequate characterization and understanding of er-
ror patterns (and in intracell variability) in flash memo-
ries, can enable novel correction codes. In [15] we report on
the observed errors measured from a TLC chip provided by
an anonymous vendor. The errors were measured from six-
teen blocks evenly divided across two planes. The follow-
ing testing procedure was repeatedly performed. On the
first cycle of every 100 program/erase (P/E) cycles, a block
was erased, and random data was then written and finally
read back for errors. On the other 99 cycles, the block was
simply erased and the memory was programmed to simu-
late the aging of the device. In Figure 5, the Bit Error Rate
(BER) is illustrated for the TLC chip tested over the course
of its lifetime. It can be seen that over time, the BER in-
creases dramatically but at different rates depending on
which bit is programmed. The dominant trend from our re-
sults is that the “Symbol Error Rate” appears to be roughly
the sum of the individual BERs of the MSB, CSB, and LSB.
This suggests that whenever a cell-error occurs, with high
probability only one of the three bits in the cell errs. More

Error Rate

+ LSB (BER)
CSB (BER)
—e— MSB (BER)
1 0-5 ; : : — Symbol Error Rate
0 1000 2000 3000 4000 5000

Program/Erase Cycles

Figure5: Error rates measured from a TLC flash device.
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Figure 6: Page error rates in flash with different coding schemes.

specifically, 96.17% of cell-errors only had a single bit in
error. In [15] we introduce new new codes to correct er-
rors that mostly affect a single bit within each cell-error.
These new codes also have the special property that they
can correct the remaining few cell-errors with two or three
bit-errors.

We also observed other trends in flash error patterns.
For example, a small subset of cells in a block cause dis-
proportionately many errors during the lifetimes of flash
devices. Such errors take place when these unreliable cells
are programmed to high levels. In [14], we modified the
codes from [15] to avoid high levels in unreliable cells, fur-
ther improving the lifetime of flash devices.

2.5 Variability-aware iterative graph-based
information processing algorithms

A promising alternative to overdesigning and guardband-
ing is to adopt an algorithmic error-tolerance approach.
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In this approach, based on appropriate hardware models
(e.g., [21, 22, 46]), we first establish closed-form funda-
mental performance limits of inference algorithms imple-
mented on noisy hardware, and then offer a principled de-
sign methodology for the algorithm implementation that
minimizes the effects of hardware variability. In particu-
lar, we quantify the effects on different operations within
the algorithm have on the overall quality of inference and
guide the implementation choice accordingly.

We first investigated the performance of popular it-
erative decoders for broadly deployed low-density par-
ity check (LDPC) codes implemented on noisy hardware.
Through a recursive analysis, we proved that different
components of an iterative decoder have different effects
on the error performance. Specifically, we showed theo-
retically and confirmed experimentally on the ERSA plat-
form [30] that the decoder output error rate is domi-
nated by the errors in the output messages at the variable
nodes [24, 25, 45). These findings enabled us to explore
a new dimension in system design. We proposed an op-
timal resource allocation scheme applicable when com-
putational units with varying degrees of reliability (and,
naturally, cost) are available, a scenario that is appro-
priate when the variable nodes and checks nodes in an
LDPC code have non-uniform degrees. Lower decoder er-
ror rate under the same implementation cost can therefore
be achieved under the informed resource allocation [44].

Moreover, our theoretical analysis also revealed the in-
herent robustness of the iterative decoders: as long as the
hardware error rate is small enough, the iterative decoders
are still able to correct most of the errors from the com-
munication channel such that the residual errors are due
to unreliable hardware only. By observing that the check-
sum constraints in LDPC codes can detect both errors from
the communication channel and from unreliable hard-
ware, we proposed a scheme to detect permanent errors in
the memory cells that store intermediate computations be-

(@)

Figure 7: Image denoising via BP: (a) original image (b) contaminated image (c) recovered image by noise-free BP (d) recovered image by

nominal BP (e) recovered image by averaging BP.
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tween successive decoding iterations. The proposed detec-
tion scheme utilizes the decoder structure (check-sum con-
straints) without adding any redundant components [25].
With the initial success of the analysis of LDPC de-
coders implemented on noisy hardware, we then broad-
ened the scope of our analysis to include general belief
propagation (BP) algorithms for inference over probabilis-
tic graphical models. In [26], we characterized the BP algo-
rithm on noisy hardware and proposed robust implemen-
tations of BP with mathematical guarantees. In particular,
we introduced averaging BP, in which the effects of compu-
tation noise are reduced by averaging messages computed
by BP over all up-to-date iterations. Theoretical analysis of
averaging BP shows that the accuracy of noise-free BP can
be achieved by averaging BP on noisy hardware. In the ap-
plication example of belief propagation for image denois-
ing, we demonstrated the effectiveness of mitigating com-
putation noise by averaging BP, as shown in Figure 7.

3 Design tools and testing
methodologies

This thrust includes the development of design and testing
techniques for better variability monitoring, aging mitiga-
tion, failure detection and system resilience. SlackProbe
is a flexible and efficient methodology for in situ perfor-
mance monitoring. BTI-Gater is a cross-layer methodology
to mitigate N/PBTI-induced clock skew on clock networks
with clock gating features. An early-life-failure (ELF) de-
tection algorithm based on local outlier factor (LOF) is de-
veloped to achieve high detection accuracy under tem-
perature and voltage variations. New low overhead tech-
niques are proposed which utilize architectural features to
achieve self-repair of uncore components of SoC.

3.1 SlackProbe performance monitoring
methodology

SlackProbe [28] is a flexible and efficient design technique
for inserting in situ delay monitors. The working principle
of SlackProbe is illustrated in Figure 8. In this example, by
allowing monitors inserted at intermediate nets along crit-
ical paths, the number of monitors can be reduced and less
than the number of path endpoints, i. e., two monitors as
compared to four path endpoints. The delay of the circuits
before the monitors (i. e., the monitored part) can be cap-
tured by the monitors, while the part of the circuits after
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the monitors (i. e., the margined part) will need additional
delay margin.

SlackProbe is also flexible in trading-off the benefit
and cost of monitoring. For critical path selection, we in-
troduce a term called “opportunism window”. As illus-
trated in Figure 9, opportunism window is used to define
the typical operating clock period that the circuits will op-
erate at if no monitor flag is detected. The paths whose
worst-case delay falls within the opportunism window are
the ones that require monitoring. The size of opportunism
window dictates the potential benefit of monitoring and
determines the number of paths that requires monitoring.
The additional monitor delay margin defines the monitor-
ing cost and affects the monitor location candidates.

Our experimental results on commercial microproces-
sors show that with 5% monitor delay margin, SlackProbe
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Figure 8: SlackProbe working principle.
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Figure 9: Opportunism window is the margin saving compared to
worst-case design. Monitor delay margin refers to the delay margin
of the delay matching chain.
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can reduce the number of monitors by 12-16X as compared
to the number of monitors inserted at path endpoint pins.

3.2 BTI-Gater clock gating methodology

BTI-Gater [29] is a cross-layer approach to mitigate aging
effects due to N/PBTI on clock networks with clock gat-
ing features. Delay degradation induced by N/PBTI has
strong dependence on workload, which can lead to dif-
ferent delay changes for clock branches under clock gat-
ing and thus additional clock skew. Since the imbalance
is caused by the different signal patterns applied on each
transistor, a circuit-level change is required for the inte-
grated clock gating (ICG) cells to change the idle states
of the clock branches. Cross-layer solutions from higher
levels of system stacks are also necessary to mitigate this
N/PBTI-induced skew because the clock gating implemen-
tation depends on the architecture and micro-architecture
context and the actual usage will depend on the software
behavior.

BTI-Gater proposes two ICG cell circuits that can al-
ternate the idle state of the clock branches for each clock
gating operation. The two ICG cells have different clock
gating latencies, which can be matched to different ar-
chitecture and micro-architecture requirements by a pro-
posed architecture-level selection scheme. Experimental
results show that BTI-Gater can balance the clock signal
duto ratio on gated branches to close to the regular 50%,
while guaranteeing a glitch-free clock signal with easy-
to-verify timing contraints. Results on commercial proces-
sors show that BTI-Gater can effectively reduce N/PBTI-
induced clock skew of up to 17 ps, which can be converted
to up to 19.7% leakage power saving compared to pure de-
sign guardbanding.

3.3 LOF-based ELF detection

Early life failure (ELF), also known as infant mortality fail-
ure, occurs in defective integrated circuits that fail in the
field before their expected product lifetime is up. Recent
experimental results demonstrated that ELF defects cause
a relative delay change (e. g., 20 ps) in a logic gate before
the functional failures. Previous work assumed a quies-
cent situation, i.e., without temperature or voltage vari-
ations. We propose a new algorithm to detect ELF under
temperature and voltage variations.

ELF detection is studied using the OpenSPARC T2
SoC design, which has a variety of components including
8 cores with 8 threads, memory subsystems and I/O com-
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ponents. A Boolean satisfiability (SAT)-based automatic
test pattern generator (ATPG) is used to generate a special
test pattern for the ELF detection. A simulation environ-
ment is developed that traces the test pattern and gener-
ates spice netlists for testing under temperature and volt-
age variations. Using the simulation platform, a local out-
lier factor (LOF)is investigated based on ELF detection al-
gorithm in this project. LOF is a density-based outlier de-
tection algorithm. The ELF-induced change shifted a prop-
agation delay in a defected gate so that the ELF signature
is detected by the LOF function [43].

Results from ELF detection simulations under tem-
perature and voltage variations show that the LOF-
based ELF detection algorithm has high detection prob-
ability and low false alarm probability. The simulation
results show that 99.0% ELF defects are detected by
LOF-based detection algorithm under 20 °C~ 70 °C and
1.00 V~1.05V variations. In addition, the false alarm
probability is less than 0.00060% under —20 “C~ 100 °C
and 1.00 V~1.05V [43].

3.4 Self-repair of uncore components in
robust system-on-chips

As technology scaling continues, large-scale systems-on-
chip (SoCs) are becoming increasingly vulnerable to soft
errors. The effects of soft errors in processor cores have
been widely researched, but little is known about how soft
errors affect uncore components, such as memory sub-
system or I/O controllers. We set out to investigate un-
core components, which account for a large footprint and
power consumption in many SoCs. The two-fold goal of
this project is to characterize the unique properties of soft
errors on uncore components, while building efficient er-
ror resilience solutions for uncore components.

We studied soft errors on uncore components using
the OpenSPARC T2 SoC design, which has a variety of un-
core components including memory subsystems and 1/0
components [32]. To accurately model the error effects on
a large-scale SoC, we needed an accurate and efficient
simulation platform. We developed a mixed-mode simu-
lation environment that combines a low-level RTL simula-
tion for accurate error modeling and a high-level architec-
tural simulator for a fast execution of real-world applica-
tions. Results from soft-error injection simulations showed
that uncore errors have significant effect on system-level
reliability (e.g., more than 1.4% of soft errors affect ap-
plication outcome). Existing error detection and recovery
mechanisms developed for processor cores, however, are
not effective for uncore soft errors due to the unique prop-
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Figure 10: Comparison of error propagation latency between the soft
errors in processor cores and the soft errors in uncore components.

erties of uncore errors such as long error propagation la-
tency, up to 1 billion cycles (see Figure 10).

To provide efficient soft error resilience for uncore
components and avoid the output commit problem, we de-
veloped an error detection and quick recovery technique
that combines flip-flop hardening and logic parity soft er-
ror detection and recovery mechanism. The new solution
eliminates 97% erroneous outcomes resulting from uncore
soft errors at less than 2% of power and 2% of area over-
head at chip-level [32].

4 Architectural mechanisms

In this section, we describe architectural mechanisms
to enhance resiliency against device aging. NBTI-aware
power-gating exploits the sleep state where a circuit is
intrinsically immune to aging. However, the benefit of
power-gating is strongly dependent on the fraction of time
that a circuit spends in sleep mode. In practice, high
power-gating factors are accompanied by significant per-
formance degradation. We show how GPGPUs can instead
arrange instructions and memory allocations to utilize the
power-gating factor without sacrificing performance. We
first propose an NBTI-aware very long instruction word
(VLIW) assignment scheme that uniformly distributes the
stress of instructions with the aim of minimizing aging of
processing elements in GPUs [40]. ARGO [38], as a GPGPU
register file management strategy, combats aging by level-
ing register banks though power-gating of stressful banks.
Both of these techniques were applied the AMD Ever-
green GPGPU architecture with general-purpose applica-
tions written in OpenCL. Finally, we discuss two of our re-
cent contributions in energy-efficient reliability for cache
and off-chip memories.
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4.1 Adaptive VLIW assignment for GPGPU

This technique leverages a compiler-directed scheme that
uniformly distributes the stress of instructions through-
out various VLIW resource slots, results in a healthy code
generation that keeps the underlying processing elements
(PEs) healthy [40]. The key idea of an aging-aware compila-
tion is to assign independent instructions uniformly to all
slots: idling a fatigued PE and reassigning its instructions
to a young PE through swapping the corresponding slots
during the VLIW bundle code generation. This basically
exposes the inherent idleness in VLIW slots and guides
its distribution that does matter for aging. Thus, the job
of dynamic binary optimizer, for K-independent instruc-
tions, is to find K-young slots, representing K-young PEs,
among all available N slots, and then assign instructions
to those slots. Therefore, the generated code is a “healthy”
code that balances workload distribution through various
slots maximizing the life time of all PEs. This adaptation
flow is illustrated in Figure 11 that has four main steps: 1)
Reading the aging sensors; 2) Disassembling the kernel,
static code analysis, and calibration of predictions; 3) Uni-
form slot assignment; 4) Healthy code generation. Com-
pared to the native kernels, the execution of healthy ker-
nels not only imposes 0% throughput penalty but also re-
duces NBTI-induced voltage threshold shift: up to 49% and
on average 34% in the presence of architectural power-
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Figure11: Aging-aware kernel adaptation flow.
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gating supports. On average, the total execution time of the
proposed adaption process is 13 millisecond.

4.2 Adaptive GPGPU register file allocation

ARGO (Aging-aware GPGPU register file allocation) [38]
is an adaptive architectural technique for GPGPU register
file (RF) allocation that exploits imbalanced RF utilization
to ameliorate lifetime degradation by uniformly distribut-
ing the stress throughout the register files, without per-
formance penalty. ARGO proactively and opportunistically
exploits the underutilized portion of RF by proper leveling,
accomplished through light-weight virtual sensing in con-
junction with deliberated power-gating of stressful banks.

Experimental results for fifteen general-purpose ker-
nels show the efficacy of ARGO through deliberated power-
gating without throughput penalty: ARGO improves NBTI-
induced threshold voltage degradation by up to 43% (on
average 27%), improves the static noise margin in register
files by up to 46% (on average 30%), and estimates a 54%
reduction in leakage power.

4.3 Power/capacity scaling in fault-tolerant
SRAM caches

Memories have historically been a major factor behind
poor system-level energy proportionality [3]. This is partly
because they contribute a relatively high portion of static
leakage power due to the large number of transistors in-
volved. In order to reduce SRAM supply voltage further,
bit errors caused by collapsed noise margins must be
tolerated for correct operation. There has been signifi-
cant progress in this area over the past decade. Our ap-
proach [11, 17] leverages the insight that min-VDD is not the
best metric for comparison of these fault-tolerant voltage-
scalable SRAM caches. This is because the power, perfor-
mance, and area overheads of the fault tolerance mecha-
nism must be accounted for. In our scheme, we use a very
simple mechanism where cache blocks are individually
power gated as they become faulty at low voltage.

This capability introduces a new power/performance
knob for improved energy efficiency and proportionality.
Using the “fault inclusion property” [17] observed on our
45 nm SOI test chips [1], we allow for compact representa-
tion of fault maps for multiple runtime voltage levels. We
use this mechanism for dynamic power/capacity scaling of
the caches, illustrated in Figure 12. As voltage is reduced,
some blocks become faulty and are disabled, which tem-
porarily trades off cache capacity for power reduction in
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response to varying workload behavior. Our approach is
able to achieve up to 75% average cache energy savings
with only 2% performance and 5% area penalties across
a suite of 16 SPEC CPU2006 benchmarks.

4.4 Low-power chipkill correct

Chipkill correct is a type of memory-error correction that
significantly improves memory reliability compared to
the well-known single-error correction/double-error de-
tection (SECDED) by providing correct memory accesses
even when a DRAM device has failed completely. How-
ever, existing chipkill-correct solutions incur high power
or storage overheads, or both because they use dedicated
error-correction resources per codeword to per- form error
correction. This requires high overhead for correction and
results in high overhead for error detection.

Recent work on chipkill correct proposes reducing its
memory power consumption of chipkill correct at the ex-
pense of increased storage overhead by reducing the num-
ber of data symbols per codeword.

In [27] we propose a novel chipkill-correct solution,
multi-line error correction, that uses resources shared
across multiple lines in memory for error correction to
reduce the overhead of both error detection and correc-
tion. In this type of solution, more physical memory is
required to provide the same amount of usable memory.
Instead of simply reducing the number of data symbols
per codeword, we explore reducing the number of check
symbols per codeword while maintaining similar rates of
detectable uncorrectable errors and silent data corrup-
tion. This allows the rank size to be reduced without hav-
ing to increase storage overhead. Our evaluations in [27]
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show that the proposed solution reduces memory power
by a mean of 27%, and up to 38% with respect to commer-
cial solutions, at a cost of 0.4% increase in storage over-
head and minimal impact on reliability.

5 Compilers and runtime support

In the compilers and runtime support thrust of our project
our objective is to build operating system and program-
ming language constructs that help applications and sys-
tem software adapt to (and exploit) variations in hardware.
We highlight seven of our efforts in this space: the VaR-
TOS embedded kernel, that adapts applications and sys-
tem duty cycle to meet lifetime goals with hardware suf-
fering from power variations; the ViRUS framework for
variability-aware algorithmic choice; the variation-aware
OpenMP (VOMP) that reduces the cost of error correc-
tion for all work-sharing constructs in OpenMP V3.0 [41,
42]; the VaMV and ViPZonE memory allocators, which
take hints expressing requirements applications allocat-
ing memory (e.g. low power or high reliability) and op-
timizes memory allocations and distribution accordingly;
test amplification for verification of GPU kernels; and
a Linux-governor based dynamic reliability manager for
Android devices.

5.1 VaRTOS

Variations in power are particularly exaggerated for idle
(or sleep) states, motivating the need to mitigate the effects
of variability in systems whose operation is dominated by
long idle states with periodic active states — that is, sys-
tems that are heavily duty-cycled. In systems where com-
putation is severely limited by anemic energy reserves and
where a long overall system lifetime is desired, maximiz-
ing the quality of a given application subject to these con-
straints is both challenging and an important step towards
achieving high quality deployments.

VaRTOS [33] is an architecture and corresponding
set of operating system abstractions that provide explicit
treatment of both idle and active power variations for tasks
running in real-time operating systems. Tasks in VaRTOS
express elasticity by exposing individual knobs — shared
variables that the operating system can tune to adjust task
quality and correspondingly task power, maximizing ap-
plication utility both on a per-task and system-wide basis.
These knobs offer both a way for tasks to express elasticity
in terms of utility and processing time and a way in which
an operating system can fine-tune task energy consump-
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tion. Developers provide bounds on the values that each
knob can assume and decide in what ways each knob is
used, but optimization of these knob values is offloaded to
the operating system and is done at runtime after accurate
power and computational models have been constructed.

VaRTOS uses opportunistic sampling of temperature
and instant power consumption to learn instance-specific
sleep power, active power, and task-level power expendi-
ture. Results on simulated hardware for several prototypi-
cal embedded sensing applications show that VaRTOS can
reduce variability-induced deviations from expected bat-
tery lifetime from over 70% in many cases to under 2% in
most cases and under 5% in the worst-case [33].

5.2 ViRUS

Task activation control mechanisms, such as those we de-
signed with VaRTOS, are a valuable adaptation strategy
for embedded sensing systems, where time spent in sleep
mode may account for most of the energy dissipated by
the system across its lifetime. For systems with significant
variation in active power consumption, a choice of soft-
ware to be executed provides further opportunities for op-
timization.

ViRUS (Virtual function Replacement Under
Stress) [49] is a framework for variability and context-
aware algorithmic choice. ViRUS is loosely related to
polymorphic engines [50] in that it is used to transform
sections of a program into different versions with alternate
code paths that perform roughly the same functionality.
Polymorphic engines are used to intercept and modify
code transparently, typically for malicious purposes such
as hiding malware functionality from anti-virus soft-
ware. In ViRUS, the different code paths provide varying
quality-of-service for different energy costs. Transforma-
tions are triggered by sensing and adapting to various
sources of variability and energy stress. A block of code
may be activated in ViRUS, for example, when processor
temperature reaches a certain threshold. A second block
may be activated when remaining battery capacity drops
below a specified percentage. The different code blocks
may be either standard library functions provided by the
runtime system or alternative implementations provided
by application programmers. Per-application configura-
tion files determine when and under what circumstances
transformations are triggered. The runtime system mon-
itors sensors for energy stress and transparently triggers
adaptation at appropriate times.

We demonstrated ViRUS with a framework for trans-
parent function replacement in shared libraries and
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a polymorphic version of the standard C math library in
Linux. The ViRUS control framework uses less than 3 KB
of RAM, and the polymorphic math library adds 10% mem-
ory overhead to its comparable single choice, high pre-
cision version. Application case studies using the poly-
morphic math library showed how ViRUS can tradeoff up-
wards of 4% degradation in application quality for a band
of upwards of 50% savings in energy [49]. We are currently
developing CaREDroid, an extended version of the ViRUS
concept for the Android mobile operating system. In the
future we also intend to explore enhanced cost/quality
profilers that could automatically assign or suggest muta-
tion rules for applications running under certain environ-
mental and process variation conditions.

5.3 VOMP

We propose a variability-aware OpenMP (VOMP) program-
ming environment, suitable for shared memory proces-
sor clusters, that relies upon modeling across the hard-
ware/software interface [41]. VOMP is implemented as
an extension to the OpenMP v3.0 programming model
that covers various parallel constructs, including task,
sections, and for. Using the notion of work-unit vul-
nerability (WUV) proposed here, we capture timing er-
rors caused by circuit-level variability as high-level soft-
ware knowledge. WUV consists of descriptive metadata to
characterize the impact of variability on different work-
unit types running on various cores. As such, WUV pro-
vides a useful abstraction of hardware variability to effi-
ciently allocate a given work-unit to a suitable core for ex-
ecution. VOMP enables hardware/software collaboration
with online variability monitors in hardware and runtime
scheduling in software. The hardware provides online per-
core characterization of WUV metadata. This metadata is
made available by carefully placing key data structures
in a shared L1 memory and is used by VOMP schedulers.
Our results show that VOMP greatly reduces the cost of
timing error recovery compared to the baseline schedulers
of OpenMP, yielding speedup of 3%-36% for tasks, and
26%—-49% for sections. Further, VOMP reaches energy sav-
ing of 2%-46% and 15%-50% for tasks, and sections, re-
spectively.

5.4 VaMV memory manager
VaMV (Variability-aware Memory Virtualization) [4] is

avariability-aware memory allocator that allows program-
mers to partition their application’s virtual address space
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into regions and create mapping policies for each region.
Each policy can be designed to meet different require-
ments (e. g., power, performance, fault-tolerance). These
user-defined and programmer-driven policies are then ex-
ploited by a dynamic memory management module which
adapts to the underlying hardware, prioritizes the memory
resources according to their characteristics (e. g., power
consumption), and selectively maps program data to the
best-fitting memory resource (e. g., highly- utilized data to
low-power memory space).

VaMV adapts memory allocation to the underlying
hardware and virtualizes the memory hierarchy, while op-
portunistically exploiting techniques such as voltage scal-
ing to reduce on-chip power consumption and power con-
sumption variability present in off-the-shelf off-chip mem-
ories. Experimental results on embedded benchmarks
show that, by exploiting SRAM voltage scaling, RAM
power variability, and efficient dynamic policy-driven
variability-aware memory allocation, VaMV is capable of
reducing dynamic power consumption by 63% on aver-
age while reducing total execution time by an average of
34% [4].

5.5 ViPZonE prototype Linux memory
manager

Motivated by our observations regarding power variations
in commodity DRAMs as described by Section 2.3, we pro-
totyped ViPZonE, a DRAM power variability-aware OS ker-
nel [5, 12, 16, 18]. Based on Linux kernel 3.2, ViPZonE’s
modified physical page allocator allows applications to
specify low or high power space when dynamically allo-
cating memory from the heap. Using our instrumented
testbed, we were able to achieve up to 27% main mem-
ory power reduction with no more than a modest 5%
performance overhead for a set of PARSEC parallel com-
puting benchmarks by exploiting the power variability
present in the system’s DIMMs. Figure 13 depicts the hard-
ware/software stack for ViPZonE-enabled systems.

5.6 Test amplification

The CUDA (Compute Unified Device Architecture) pro-
gramming model and platform has recently enjoyed
tremendous success in parallel computing. Due to its mas-
sive parallelism, loose synchronization mechanism, and
fine-grained memory sharing, however, CUDA programs
are hard to get right, and are difficult to analyze with
existing static or dynamic approaches. Static techniques
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Figure 13: ViPZonE hardware/software architecture.

are thwarted by the complexity of the sharing patterns.
A useful static analysis would have to find a succinct sym-
bolic representation for the sets of addresses accessed by
each thread. It is common for CUDA code to use mod-
ular arithmetic or bit-shifting to access memory indices
according to complex linear or even non-linear patterns
which makes such analyses difficult. Dynamic techniques
are challenged by the combinatorial explosion of thread
interleavings and space of possible data inputs: any rea-
sonable number of tests would represent a small subset of
the possible behaviors of the system.

To attack these challenges, we employ test amplifica-
tion, a general notion wherein a single dynamic run can be
used to learn much more information about a program’s
behavior than is directly exhibited by that particular exe-
cution. First, we run a dynamic analysis where we log the
behavior of the kernel with some fixed test input and under
a particular thread interleaving. Second, we use a static in-
formation flow analysis to compute the property-integrity
inputs, namely, the input variables that actually flow-to,
or affect the integrity of, the variables appearing in the
property to be verified. Finally, we amplify the result of
the test to hold over all the inputs that have the same val-
ues for the property-integrity inputs. In [31] we empirically
demonstrate the effectiveness of test amplification for ver-
ifying race-freedom and determinism over a large number
of standard GPU kernels, by showing that the result of ver-
ifying a single dynamic execution can be amplified over
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the massive space of possible data inputs and thread in-
terleavings.

5.7 Dynamic Reliability Management in
Linux

Dynamic Reliability Management (DRM) enables trade-
offs between processor degradation and performance at
runtime. Reliability is periodically assessed, and proces-
sor operating conditions are controlled to limit the degra-
dation source (i.e. temperature and voltage). The goal
of DRM is maintain a predefined target reliability within
a predefined target lifetime.

Implementation of DRM requires degradation sensors
to be integrated on processors. However, these are avail-
able only on prototypes today. To enable the evaluation
of DRM techniques on existing mobile devices, we devel-
oped an online reliability emulation framework and imple-
mented it on a real Android device [34]. The framework is
implemented at the level of the operating system and ex-
ploits existing hardware interfaces. It samples real voltage
and temperature data and applies mathematical models to
emulate the reliability degradation of the real platform.

Work in [36] introduces a Linux governor - i. e., a con-
troller for operating conditions — for reliability manage-
ment. The proposed governor implements the reliability
Borrowing Strategy that we proposed in [35], which ac-
counts for the execution of workload with varied quality
requirements. We developed our DRM governor on a Snap-
dragon S4 mobile development tablet, which has an asyn-
chronous quad Krait CPU with frequency from 380 MHz
up 1.67 GHz and voltage from 0.95 V to 1.25 V. Cores have
independent voltage/frequency (V/f) settings and fixed
operating V/f points. Therefore, changing frequency auto-
matically changes voltage.

Figure 14 shows our Reliability Governor for workload-
aware DRM and the Debug and Monitor Infrastructure that
exports data to the user space. The framework has a Long
Term Controller (LTC) which activates every Long Inter-
val (LI =days it takes for reliability to change) and a Short
Term Controller (STC) which activates every Short Inter-
val (SI=1jiffy). Tasks are divided in Highly critical (H)
and Less critical (L). For providing good user experience,
H tasks must be executed at maximum frequency. The goal
of DRM is to let the core reliability R be above a target re-
liability Rt at the predefined target lifetime. The controller
acts by monitoring temperature and adjusting voltage and
frequency to adjust to task load and reliability require-
ments. Results in [36] demonstrate how our reliability gov-
ernor can achieve upwards of 100% improvement in life-
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time compared to a traditional (performance-driven) gov-
ernor while still providing high performance for critical
tasks.

Our recent work also proposed a novel Dynamic
Variability Management (DVM) strategy to improve per-
formance of mobile multiprocessor subject to lifetime
constraints [37]. The solution exploits sensors to moni-
tor degradation and performance variability and adapts
through a 0S-level scheduling and frequency scaling al-
gorithm. The runtime management comprehensively ac-
counts for (1) variation on degradation rate; (2) variation

in performance; (3) variation in application-specific qual-
ity requirements; (4) lifetime constraint and (5) ambient
temperature variation.

Figure 15 shows the DVM framework. A degradation
monitor activates periodically at a large time scale (in the
order of days) and it samples sensors to determine the
degradation status of each core. Based on this, it outputs
a reference value of voltage Vi rger- The constraint on
lifetime is met if the average voltage over time is below
Vrarger- This is the input to the Dynamic Variability Man-
agement algorithm, which executes two subroutines at the
rate of scheduling ticks: (1) T-boost extended DVFS and
(2) Variability-aware task allocation. The proposed strat-
egy has been implemented and tested on a real Android
device and demonstrated to achieve up to 160% perfor-
mance improvement relative to the state-of-the-art.

6 Applications and testbeds

In the applications and testbeds thrust of the Variability
Expedition we aim to build tools and prototypes for the
development and demonstration of variability aware and
tolerant systems. In this section highlight two efforts from
this thrust: the VarEMU variability emulator and the Fer-
rari testbed.
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6.1 VarEMU

VarEMU [48] is an extension to the QEMU virtual machine
monitor that serves as a framework for the evaluation of
variability-aware software techniques. VarEMU provides
users with the means to emulate variations in power con-
sumption and in fault characteristics and to sense and
adapt to these variations in software. Through the use (and
dynamic change) of parameters in a power model, users
can create virtual machines that feature both static and dy-
namic variations in power consumption. Faults may be in-
jected before or after, or completely replace the execution
of any instruction. Power consumption and susceptibility
to faults are also subject to dynamic change according to
an aging model. A software stack for VarEMU features pre-
cise control over faults and provides virtual energy mon-
itors to the operating system and processes. This allows
users to precisely quantify and evaluate the effects of vari-
ations on individual applications.

In VarEMU, timing and cycle count information is ex-
tracted from the code being emulated. This information is
fed into a variability model, which takes configurable pa-
rameters to determine energy consumption and fault vari-
ations in the virtual machine. Energy consumption and
susceptibility to faults are also subject to dynamic change
according to an aging model. Control over faults and vir-
tual energy sensors are exported as “variability registers”
mapped into memory that is accessible to the software
being emulated, closing the loop. This information is ex-
posed through a variability driver in the operating system,
which can be used to support software adaptation poli-
cies. Through the use of different variability emulation pa-
rameters that capture instance-to-instance, environmen-
tal, and age-related variation, VarEMU allows users to
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Figure 16: Ferrari testchip block diagram and layout illustration.
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evaluate variability-aware software adaptation strategies
across a statistically significant number of hardware sam-
ples and scenarios.

6.2 OrangeFerrari testbed

The goal for this project is to build an end-to-end UnO
machine prototype, which can be used as a testbed for
demonstrating and validating some of the expedition
work. RedCooper [1] is our first attempt in building such
testbed. It is based on a testchip taped-out using a 45 nm
IBM SOI technology with dual-Vth libraries. The testchip
contains an ARM Cortex-M3 microprocessor, our perfor-
mance sensors [8] and some other on-chip leakage power
sensors. A testbed board is built to drive the testchip and
offers board-level power sensing and voltage/frequency
scaling capabilities. A customized embedded operating
system (OS) is ported based on CoOS [9]. With RedCooper
testbed, we have successfully demonstrated a variability-
aware applications running with the expedition duty cy-
cling work [33].

OrangeFerrari testbed is our generation end-to-end
variability testbed. The testchip is taped-out using the
same 45 nm IBM SOI technology. The testchip block dia-
gram and layout are shown in Figure 16. Compared to
our earlier version of the testchip, this one is based on
the same ARM Cortex-M3 microprocessor, but with larger
SRAM and more peripherals supports. More varieties of
on-chip sensors are also implemented, including DDRO
performance sensors, leakage power sensors, temperature
sensors and gate oxide breakdown sensors.

The testbed board block diagram is shown in Fig-
ure 17. Compared to RedCooper testbed, OrangeFerrari

N
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Figure 17: OrangeFerrari testbed block diagram and board photo.

testbed also includes additional network connection capa-
bilities with both wired (ethernet) and wireless (Xbee [10])
options. The OS porting is based on FreeRTOS [13]. A cus-
tomized routine is implemented to handle the communica-
tion with the on-board power sensors or through the net-
work.

7 Conclusion

The NSF Variability Expedition started in 2010 with
a promise of delivering holistic hardware/software so-
lutions to the problem of process and environmental
variability in semiconductor components. As our efforts
evolved, there was a natural shift from variation charac-
terization and modeling to variability-aware system design
and implementation. Our initial characterization efforts
showed that contemporary processors, memory, and stor-
age systems already suffer from considerable variation in
power and reliability. Our work in design tools and test-
ing methodologies introduced low-cost variability sensing
and mitigation mechanisms to hardware designs. Our ar-
chitecture research introduced new adaptive memory con-
trollers as well as error management and correction tech-
niques. In runtime systems, we introduced new sched-
ulers, runtimes, and memory management systems that
can adapt to variations in the power and error charac-
teristics of individual and distributed platforms. Finally,
our work on testbeds, particularly the Ferrari test chip
and board now provide a complete evaluation platform
for embedded variability-aware software. Our recent ef-
forts in international collaboration, particularly through
the joint annual review and joint colloquium with the
German Research Foundation (DFG) Priority Program SPP
1500 project [23] in 2014 provided opportunities for mutual
awareness and nascent joint research. Moving forward, we
expect to see a greater focus on variable quality and ap-
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proximate software and hardware, as well as on the inter-
play between cost and reliability at different abstract lay-
ers of the system.
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