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Abstract—Conventional error-correcting codes (ECCs) and
system-level fault-tolerance mechanisms are currently treated as
separate abstraction layers. This can reduce the overall efficacy
of error detection and correction (EDAC) capabilities, impacting
the reliability of memories by causing crashes or silent data
corruption. To address this shortcoming, we propose Software-
Defined ECC (SWD-ECC), a new class of heuristic techniques
to recover from detected but uncorrectable errors (DUEs) in
memory. It uses available side information to estimate the original
message by first filtering and then ranking the possible candidate
codewords for a DUE. SWD-ECC does not incur any hardware
or software overheads in the cases where DUEs do not occur.

As an exemplar for SWD-ECC, we show through offline
analysis on SPEC CPU2006 benchmarks how to heuristically
recover from 2-bit DUEs in MIPS instruction memory using
a common (39,32) single-error-correcting, double-error-detecting
(SECDED) code. We first apply coding theory to compute all of
the candidate codewords for a given DUE. Second, we filter out
the candidates that are not legal MIPS instructions, increasing
the chance of successful recovery. Finally, we choose a valid
candidate whose logical operation (e.g., add or load) occurs
most frequently in the application binary image. Our results
show that on average, 34% of all possible 2-bit DUEs in the
evaluated set of instructions can be successfully recovered using
this heuristic recovery strategy. If a DUE affects the bit fields
used for instruction decoding, we are able to recover correctly
up to 99% of the time. We believe these results to be a significant
achievement compared to an otherwise-guaranteed crash which
can be undesirable in many systems and applications. Moreover,
there is room for future improvement of this result with more
sophisticated uses of side information. We look forward to future
work in this area.

I. INTRODUCTION

New approaches to improving memory resiliency are neces-
sary. Memories are a primary cause of hardware failures in the
field [1], [2], [3], and comprise a significant portion of data-
center cost [4], [5]. Error-correcting codes (ECCs) and system-
level fault-tolerance techniques for memories have historically
been treated as separate abstractions in the hardware/software
stack. When detected but uncorrectable errors (DUEs) occur
in memory, crashes or silent data corruptions often follow
because the system and ECC algorithm fail to share their avail-
able side information about the error. A solution that crosses
these abstraction layers could bring a significant improvement
to system resiliency, which is critically needed in the nanoscale
era [6].

We propose a novel class of techniques, which we
call Software-Defined Error-Correcting Codes (SWD-ECCs),
that cross the abstraction gap between coding theory and
hardware/software fault-tolerance techniques. These promise
better-than-worst-case error detection and correction (EDAC)
capabilities for memory. The key idea in Software-Defined
ECC is to leverage available side information about the un-
derlying message data being stored in memory to heuristically
recover from DUEs that exceed the guarantees provided by the
ECC code by itself. This is done by speculating on the correct
value of the original message that has been corrupted.
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Fig. 1. High-level concept for Software-Defined Error-Correcting Codes 
(SWD-ECC), which, instead of crashing or poisoning data, heuristically 
recovers from DUEs that occur in memory words (red lightning bolts) via 
the collaboration of system software and ECC hardware.

SWD-ECC could be useful in a variety of systems. A 
large class of applications are naturally error-tolerant and 
approximation-friendly at the algorithmic level [7]. In these 
systems, DUEs tend to be more inconvenient than catas-
trophic, so probabilistic error recovery would likely be ac-
ceptable. Even in high-performance systems where correctness 
is paramount, SWD-ECC could enable faster recovery from a 
DUE with a reasonable chance of success. If the correctness of 
the recovery attempt can be eventually verified (e.g., through 
control flow checks [8] or symptoms of abnormal execution 
[9]), SWD-ECC could improve performance compared to 
performing a time-consuming rollback to a system checkpoint 
and then re-computing state. SWD-ECC could also be useful 
in real-time systems where missing a deadline is worse than 
the possibility of incorrect execution. Therefore, we believe 
that there is room for SWD-ECC as an option alongside 
crashing, silent data corruption, and state re-computation in 
response to memory DUEs. The high-level concept for SWD-
ECC is shown in Fig. 1.

As an exemplar for SWD-ECC, we show how to heuristically 
recover from 2-bit DUEs that can occur in a 32-bit MIPS 
instruction memory that is protected using a common single-
error-correcting, double-error-detecting (SECDED) code. This 
is done by leveraging properties of the ECC code, knowledge 
of the MIPS ISA, and statistics extracted from the compiled 
program binaries. We exhaustively study all possible 2-bit 
errors that can occur for each of the first 100 instructions 
in five SPEC CPU2006 benchmarks. On average, we are able 
to successfully recover from 34% of these errors: depending 
on the need for correctness, we believe this is significantly 
better than a guaranteed system crash that would occur in 
conventional systems.

This paper is organized as follows. In Sec. II, we discuss 
background information and related work on ECC and system-
level fault-tolerance techniques for memories. In Sec. III, we 
describe the fundamental concepts behind SWD-ECC and 
give several use case examples. We evaluate an exemplar 
implementation via offline static analysis on SPEC CPU2006
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executable code in Sec. IV. Sec. V concludes the paper.

II. BACKGROUND AND RELATED WORK

Reliability mechanisms for memory systems can be broadly
classified into fundamental EDAC capabilities built using
channel coding theory, and system-level fault-tolerance meth-
ods that rely on them. We first review basic concepts and
related work for ECC before discussing some relevant aspects
of system-level fault-tolerance.

A. Error-Correction Codes
ECC [10] is the fundamental EDAC mechanism that guards

against memory errors and is typically implemented in hard-
ware. We consider the common class of systematic linear
block codes for a binary symmetric channel (BSC). Any such
code permits the notation (n,k) that specifies the length of a
codeword and an input message, respectively, where n > k.
Encoding is done by multiplying the k-bit message with the
binary generator matrix. The resulting n-bit codeword is stored
in the memory, and includes r = n−k extra parity-check bits. A
memory read obtains the received string, which is multiplied
with the binary parity-check matrix. This decoding process
yields a syndrome, which is an r-bit string containing the
results for a set of parity-check equations. If the syndrome is
0, then the received string is a codeword and no errors were
detected. The message is then extracted from the codeword
by discarding the redundant parity bits. Otherwise, one or
more bit-errors were found in the received string. To attempt
correction, a syndrome decoding procedure is used to find the
maximum-likelihood input codeword. For more information on
the theory of ECCs, we refer the reader to [11].

The codes used for memories usually guarantee the correc-
tion of up to t-bit errors and the detection of t+1-bit errors in
an n-bit codeword. The most common form of these codes is
the single-error-correcting double-error-detecting (SECDED)
family [12], which guarantees a minimum Hamming distance
of 4 bits between codewords. There are many codes that
are more powerful than SECDED and are sometimes used
for memories, such as double-error-correcting, triple-error-
detecting (DECTED), BCH [13], and ChipKill [14], but they
come with much higher bit storage and/or performance over-
heads than SECDED. In this work, our implementation and
evaluation is done using a (39,32) SECDED ECC code.

Many other advanced codes suitable for memory exist in
the research literature. Several works have explored source
coding and channel coding for fault models other than the
BSC by focusing on emerging non-volatile random-access
memories (NVMs) [15], [16], [17], [18] and storage-class flash
memory [19], [20], [21], [22], [23]. ECCs that are suitable
to approximate computing, e.g., Variable-Strength ECC [24]
have been proposed. Others have advocated for using error
avoidance techniques that could be used instead of ECC for
coping with hard faults that can be characterized a priori [25],
[26]. However, none of these works have explored how to
heuristically recover from DUEs that can still occur in any
type of memory, whether they be SRAM, DRAM, or a form of
NVM. Their approaches are generally orthogonal to Software-
Defined ECC, and we believe that many could be combined
with the ideas in this work.

B. System-Level Fault-Tolerance
System-level fault-tolerance techniques are often used in

addition to the fundamental EDAC mechanisms provided

by the ECC hardware [27]. Checkpointing [28], mirroring,
and sparing [29] are costly techniques commonly used in
mainframes, supercomputers, and/or mission-critical systems.
Checkpointing can periodically save the state of the entire
system or application. In the case of a memory DUE, the
system can be rolled back to the last checkpoint, hopefully
avoiding catastrophic crashes or silent data corruption. There
are also alternatives to memory ECC that can be used for
error detection and typically rely on checkpointing as a cor-
rection/recovery mechanism [8], [9]. Reliability management
techniques such as memory page retirement [30] or scrubbing
[31] are opportunistic and incur little or no hardware cost.
They allow the system performance to degrade gracefully from
failures without high performance overheads, but often lack
firm reliability guarantees because they can only speculate on
the occurrence of future DUEs, not recover from existing ones.
In contrast, SWD-ECC speculates on the correct outcome of
a DUE given that it has already occurred.

All of the above system-level fault-tolerance techniques
are complementary to the SWD-ECC concepts described in
this paper and can be combined for improved system-level
resilience against memory DUEs. For further information, we
refer the reader to [32] for an excellent survey on recent work
studying the reliability of computer systems.

III. SOFTWARE-DEFINED ECC CONCEPT

Software-Defined ECC (SWD-ECC) is a new approach in
the field of memory resiliency that intersects both coding
theory and system design to enable better-than-worst-case and
opportunistic recovery from DUEs. We discuss how SWD-
ECC can address the limitations of abstracted ECC and fault
tolerance layers, a novel DUE heuristic recovery procedure,
and usage considerations.

A. Problems with the Existing Abstraction Stack
Conventional system-level fault-tolerance techniques ignore

properties of the ECC code on which they rely. The ECC
hardware is usually treated as a black box that simply reports
whether a memory word had no error, a corrected error
(CE), or a DUE. Typically, little information about a DUE is
given, perhaps other than the memory address of the corrupted
word. Upon notification of a DUE, most systems trigger a
kernel panic, while high-end systems might roll-back to a
checkpointed state or poison the corrupted memory word
to contain the effects of the error. This behavior may be
undesirable in scenarios where forward progress must be made
in a timely manner, or when the application is naturally error-
tolerant.

Similarly, ECC codes that are used today are agnostic to
patterns in the underlying message contents that arise from the
behavior of the system and applications. The most common
assumption is that all bit errors are equally likely – i.e., the
memory is modeled as a BSC – and that all messages are
equally likely to be encoded. This simplifies the maximum-
likelihood decoding procedure, which essentially chooses the
codeword that has the shortest Hamming distance to the
received string. Unfortunately, the assumption often does not
hold in reality, making this decoding procedure sub-optimal.

SWD-ECC addresses the above shortcomings of separate
system-level fault-tolerance and ECC abstraction layers by
using available side information about the source and/or the
channel. Side information arises through the cooperation of
hardware and software, and generally could be comprised
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Fig. 2. Conceptual illustration of a two-dimensional partial slice of the n-
dimensional binary space for a general (n,k) SECDED code. Each point
represents an n-bit string, all of which are either codewords, CEs, or DUEs.
Not all DUEs (red and orange points) have the same number of equidistant
candidate codewords, as shown by their 2-bit radii (red and orange circles).

of fault models for the channel and/or message contents for
the source. In this paper, we only consider the latter type of
information.

B. Heuristic Recovery from DUEs
The key idea in SWD-ECC is that side information can be

used to heuristically recover from DUEs by trying to correctly
estimate the original uncorrupted message. We now outline the
major requirements for SWD-ECC functionality along with
examples. Throughout, we assume the use of SECDED codes,
but the concepts can extend to others as well.

Candidate codewords. The first requirement of SWD-ECC
is the ability to find all possible candidate codewords, i.e., the
specific codewords that, when corrupted with any double-bit
error, result in the known-erroneous received string. Consider
Fig. 2, which shows a two-dimensional partial slice of a
hypothetical (n,k) SECDED code. The larger black circles
represent codewords (no errors), and the smaller gray circles
represent strings with Hamming distances of 1 bit from
codewords, making them inside the Hamming spheres that
are centered on the codewords (CEs). The red and orange
pentagons represent strings that have a Hamming distance of
at least two bits from all codewords, making them lie outside
the Hamming spheres (DUEs). For each DUE, there are several
equidistant candidate codewords, one of which corresponds to
the original message. In the figure, the equidistant codewords
for each DUE fall inside the red and orange circles which
have a radius of two bits. In a conventional SECDED decoder,
because all messages are assumed to be equally likely, the
decoder cannot differentiate between the candidate codewords.
It gives up and notifies the system of a DUE. SWD-ECC,
however, attempts to choose a candidate codeword that has the
best chance of being the correct answer. It firsts computes an
exact list of candidate codewords for a DUE. This procedure
is similar to the information-theoretic concept of list decoding
[33], [34]; the primary difference is that we only compute a
list upon registering a DUE, instead of computing them on
every memory access.

If we assume DUEs only occur as a result of a double-bit
flip, one can compute the list of candidate codewords for a
SECDED code by iteratively flipping each of n bits at a time
in the received string. For each such trial flip, a modified string
is obtained and then input to the SECDED decoder. Many of
these modified strings will still be registered as DUEs by the
SECDED hardware (making them 3-bit DUEs with respect
to the correct answer), but some will land inside a nearby

Hamming sphere. The latter group of modified strings will be
interpreted as 1-bit CEs and are decoded to the set of candidate
codewords.

At this stage, with a list of candidate codewords, the SWD-
ECC problem is reduced to choosing the correct answer.
Interestingly, the number of candidates (and the chance of
recovery) depends on the exact positions of the two bits
in error. This arises in SECDED codes that are based on
truncated Hamming codes, such as the common (39,32) and
(72,64) codes used in memories. In these codes, there exist
some bit strings that have a Hamming distance of two bits
from a DUE and are themselves DUEs instead of codewords.
To visualize this, refer again to Fig. 2; the bit string indicated
by the red pentagon has four equidistant candidate codewords,
while another bit string (orange pentagon) has only three
candidates.1

Randomly choosing a candidate codeword for recovery is not
a good solution. Thus, the second requirement of SWD-ECC,
after the ability to find all candidate codewords, is the use
of available side information to select the best candidate. For
simplicity, in this paper, we exclusively use message content
as the side information, and ignore fault models other than the
BSC. We now discuss some possibilities for side information
that can be used in data and instruction memories protected
by SECDED ECC.

Side information for data memory. Consider a system
where SWD-ECC is used to protect data memory. If it is
known that a particular memory location is part of an array
of unsigned integers of low magnitude – perhaps via program
debug information with the help of the operating system –
then SWD-ECC’s heuristic recovery scheme can rule out any
candidate codewords whose messages have 1s in the most-
significant bit positions. Similarly, if the location is known
to contain a memory address (i.e., it is a pointer), then
SWD-ECC can reasonably eliminate all candidate codewords
whose messages would point outside the virtual address space
allocated to the application.

In the absence of high-level semantic program information
such as the examples using data types just described, heuristic
recovery can still be done using program statistics. Several
works have shown that the data words in a cache line tend to be
highly correlated [35], [36], [37]. Candidate codewords whose
corresponding messages are distant (by any software-defined
metric) from neighboring messages in the cache line could
be eliminated for consideration by SWD-ECC. For instance,
if the data types of words in the cache line are known, then
the integral magnitude can be used as a distance metric. Even
if the data types cannot be inferred, a simple majority-vote
procedure on groups of bits could be used to aid recovery.

We leave further study of the above ideas to future work and
now focus on instruction memory.

Side information for instruction memory. Now consider
a scenario where we wish to heuristically recover from a
DUE in instruction memory. The likelihood of recovery can
be greatly improved by leveraging the ISA itself. In general,
instruction sets are not fully populated: some bit strings
indicate reserved or illegal instructions. For instance, in most
RISC ISAs, instructions have a fixed length and a dedicated
region for storing the opcode. This field describes the basic
logical behavior of the instruction as well as the format of

1Note that the figure does not accurately illustrate the non-perfect nature
of the code space; many dimensions are needed to draw this faithfully.
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Fig. 3. Proposed system-level flow for Software-Defined ECC.

remaining bit fields. In our manual analysis of the MIPS1
instruction set [38], we found that only 41 out of 64 possible 6-
bit opcode values are used. The remaining opcodes constitute
illegal instructions. For the register-type (R-type) instructions,
which have opcode 0x00, an additional 6-bit funct field is
used to further specify the operation. Out of these, only 37
out of 64 values are legal. If the opcode is 0x11, indicating
a floating-point operation, then a 5-bit fmt field is used, of
which only three out of 32 values are legal. We use facts
such as these to eliminate any candidate codewords/messages
that constitute illegal instructions, improving chances of a
successful recovery.

Recovery from DUEs in instruction memory can also be
aided by program statistics. Programs tend to use a few
instructions very frequently, while many specialized operations
are rarely used, if at all. A list of valid candidate codewords
that correspond to legal instructions can be ranked by the
relative frequency of opcode appearance in the program image.
The recovery target could simply be the candidate that appears
most often overall.

C. Use Models
SWD-ECC can heuristically recover from DUEs without

changing the ECC code rate or implementation, but this can
come at the expense of performance. In the common cases
when no errors or only CEs occur, decoding complexity and
memory system performance remain unaffected. When a (rare)
DUE actually does occur, however, software is used to assist
the ECC hardware in recovery, hurting performance. However,
a chance at correct recovery from rare errors may be worth a
temporary loss in performance, particularly if the performance
overheads of alternative techniques such as rolling back to a
checkpoint are large.

We propose a high-level SWD-ECC methodology that is
shown in Fig. 3. Upon a read from memory, the ECC hardware
checks for errors: if there are no errors or only a CE, then ECC
is successful, whereas if there is a DUE, the system attempts to
recover (instead of crashing, like many conventional systems).
If the memory page in question is clean, a page fault can be
used to recover from the DUE; if a recent checkpoint exists
and the performance penalty is modest, a rollback can be
triggered. If none of these are viable options, SWD-ECC takes

over with heuristic recovery instead of poisoning the data as
might be done in high-end systems [31]. We use the heuristic
recovery procedures described above depending on whether
the DUE occurred in data or instruction memory.

Chance of incorrect recovery. There is always a possibility
that the selected recovery target is incorrect. Depending on
the system scenario, it may be desirable to speculatively fork
execution of the process impacted by the DUE. Each fork
could receive a unique and poisoned candidate codeword to
use in its version of execution. Parallel execution of each fork
would continue until one of the following conditions occur:
(i) crashes, assertion failures, or other symptoms of abnormal
execution [9] occur on all but one fork; (ii) only one fork
contains non-poisoned state, i.e., the others logically masked
the error; (iii) multiple forks reach a milestone with identical
states, allowing them to be joined and assumed correct; (iv)
all forks’ outputs are measurably incorrect except one; or (v)
multiple forks survive to a point where state must be made
permanent, in which case it may be best to forfeit progress of
all forks, and roll back to the last good checkpoint or restart
execution of the workload from the beginning.

Compression as an alternative to SWD-ECC. An al-
ternative approach to SWD-ECC might instead use lossless
compression on the message contents (source coding) [35],
[36], [37], so that they have higher entropy before being
channel coded with ECC. The tradeoffs between compression
and SWD-ECC are not yet clear; we leave this to future work.

IV. EVALUATION

As an exemplar for the class of SWD-ECC approaches, we
evaluate our proposed method for heuristically recovering from
DUEs that affect a 32-bit MIPS instruction memory through
offline analysis on SPEC CPU2006 benchmarks.

A. Experimental Setup
We used a common (39,32) SECDED code whose exact

generator and parity-check matrices can be found in [39]. The
only side information we considered is the MIPS1 ISA itself
[38] and the relative frequencies that instruction operations
appear in a compiled program image. We assumed a BSC fault
model, i.e., all possible 2-bit flips in a codeword are equally
likely to occur.
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Fig. 4. This heatmap depicts the number of candidate codewords as a function
of the two error bit locations in a DUE using our (39,32) SECDED ECC code.
Hotter colors indicate more candidates, which range from 8 to 15. There are
exactly 741 possible 2-bit error patterns.

We used bzip2, h264ref, mcf, perlbench, and povray bench-
marks from the SPEC CPU2006 suite. Each benchmark was
cross-compiled for 32-bit MIPS1 using gcc. We fully dis-
assembled each binary image using the readelf tool, and
used a MATLAB script to compute statistics on the relative
frequencies that each operation (instruction mneumonic, e.g.,
add, lw, beq, etc.) appears in each program image.

We examined all possible
(39

2

)
= 741 2-bit error vectors on

the first 100 instructions from each program’s .text section.
For instance, the error vector 0 is 1100...00002, the second
is 1010...00002, and so on, until error vector 740, which is
0000...00112. Each error vector was xor-ed with the 39-bit
SECDED-encoded instruction that was under consideration,
which provided the received string. These were the inputs to
the SWD-ECC heuristic recovery procedure.

For each pair of instruction and error vector, we computed all
possible candidate codewords. Next, the candidate messages
were filtered for legality when interpreted as MIPS instruc-
tions. To achieve this, we isolated and extracted the C++
code that implements the MIPS instruction decoder from the
gem5 simulator [40]. Our version of this ISA decoder simply
indicates whether a 32-bit binary value is a legal or illegal
MIPS instruction, and if it is legal, the type of operation is
reported. Finally, the remaining valid messages were ranked
by the relative frequency that their mneumonics (e.g., add, lw,
beq, etc.) appear in the entire program image.

B. Results

We analyze the properties of our selected (39,32) SECDED
ECC code before evaluating the efficacy of our heuristic
recovery scheme for MIPS instruction memory using a basic
filtering-only approach and our final and improved filtering-
and-ranking approach.

Properties of SECDED code. The number of candidate
codewords for a DUE as a function of the exact locations
of the two bits in error are depicted in Fig. 4. The results are
independent of the input message because the code is linear.
At worst, there are 15 candidate codewords for a double-bit
error, and at best, there are eight candidates; on average, there
are approximately 12 possibilities. The heatmap indicates that
some 2-bit DUEs have almost twice the baseline likelihood of
successful recovery compared to others.

(a) Candidate Codewords/Messages

(b) Valid Messages (Filtered Subset of Candidate Messages)

Fig. 5. Number of possible recovery targets as a function of the two
bitwise error locations and the instruction index in the mcf benchmark. A
lower number is better, as it increases the probability of successful heuristic
recovery from a DUE. The number of candidate codewords in Fig. 5(a) is
independent of the message (instruction) due to the linearity of the ECC
code, and is therefore the same for all applications. The filtered subset, shown
in Fig. 5(b), is used in both of the filtering-only and filtering-and-ranking
recovery strategies. Here, the number of valid messages indeed depends on
the original message (instruction).

Filtering-only recovery strategy. We first consider whether
the input message has any effect on the number of candidate
codewords for all 741 error patterns by filtering those that
correspond to illegal instruction messages. Fig. 5(a) shows the
number of candidate codewords as a function of the unique
2-bit error pattern and the original message, which is one
of the first 100 instructions from the mcf benchmark. We
can see that the particular encoded instruction message has
no effect because the ECC code is linear. However, once
the candidate messages are filtered for instruction legality, as
shown in Fig. 5(b), the number of valid messages becomes
dependent on the original instruction. On average, the number
of valid messages decreases by approximately two compared
to the number of candidate messages. In the best cases,
the number is reduced to just one possibility: without any
additional information, the probability of successful recovery
from these 2-bit DUEs is already 100%! The best-filtered
candidate messages have errors in the opcode, funct, and/or
fmt instruction fields. Errors that occur in the register address,
memory address, or immediate fields do not filter the candidate
codewords as effectively. This is because in the MIPS ISA,
these fields can legally be any value.

We evaluated the efficacy of choosing a random decode
target out of the full set of candidate messages as well as
the filtered set of valid messages. Fig. 6 depicts the fraction
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Fig. 6. Baseline histogram of successful rates for heuristic recovery over all
741 possible 2-bit DUE error locations for MIPS instructions in bzip2 using
a (39,32) SECDED code using the filtering-only strategy.

of 2-bit error patterns that achieved each rate of successful
heuristic recovery for the bzip2 benchmark. On average, over
the first 100 instructions, the filtering-only method mildly
improves the probability of successful recovery (black vs.
gray lines). However, for the best cases out of the 100 bzip2
instructions, the improvement is stark (red line) with a range of
≈15% to ≈95% chance of recovery. We improve these results
further by ranking the filtered valid codewords/messages.

Filtering-and-ranking recovery strategy. After filtering, we
evaluate the benefit of ranking the valid instruction messages
by the relative frequency that their operations appear in
the whole program image. The distribution of unique MIPS
operations (e.g., add, mul, beq, sw, etc.) in each of the
five benchmarks are shown in Fig. 7. It is clear that the
distributions resemble a power law: some instructions occur
very frequently, with lw comprising approximately 20% of all
operations in each benchmark, while other instructions (e.g.,
div) occur orders of magnitude less often. This information
is very useful to SWD-ECC. Hypothetically, if two valid
messages under consideration are, for example, lw and the rare
sqrt.s, then SWD-ECC would choose the much more common
lw instruction as the recovery target.

The fraction of original instructions that could be success-
fully recovered as a function of the 2-bit error pattern over
all five benchmarks is shown in Fig. 8. When the errors
are located in the opcode, funct, and fmt fields, the original
message can be recovered up to 99% of the time. When both
errors are located in the least significant bits of a codeword
(roughly, indices 350 through 740), the chances of recovery
drop to ≈15%. As noted earlier, this is because the low-order
bit fields in MIPS instructions can usually be any value without
making the instruction illegal. Moreover, we found that the
candidate codewords for an error pattern in the low-order bits
tend to have the same operation. For instance, two particular
bits that are flipped in the target address field of a j (jump)
instruction causes most of the candidate messages to also be j
instructions. In these cases, our heuristic recovery scheme fails
to distinguish the possibilities, and chooses one of the j options
randomly. This causes a lower success rate. Nevertheless, our
approach achieved an average 34% success rate over all error
patterns and the 500 instructions tested from our benchmarks.
We consider this a significant achievement compared with a
guaranteed system failure that would otherwise occur in most
conventional platforms.

V. CONCLUSION

Software-Defined ECC (SWD-ECC) is a novel approach
to improving the resilience of memory to faults with no
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Fig. 7. The MIPS instructions that appear in applications (e.g., add, lw, bne,
etc.) roughly follow a power law distribution. We use this in the filtering-
and-ranking strategy as additional side information for heuristic correction of
DUEs that occur in instruction memory. To improve figure clarity, instruction
mneumonics are not labeled.
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Fig. 8. Rate of successful heuristic recovery for MIPS instruction memory for
five benchmarks over all 741 possible 2-bit DUE error locations with a (39,32)
SECDED ECC code. Here, we apply the filtering-and-ranking strategy, i.e.,
candidate codewords are first filtered for valid instruction messages before
choosing the most-commonly occurring operation as the recovery target.

required change to the hardware architecture. It works through
hardware/software collaboration, where the system-level fault-
tolerance schemes exploit theoretical fundamentals of the
underlying ECC code, and the ECC code exploits available
side information about messages stored in memory. Our results
showed that on average, 34% of DUEs in an instruction
memory can be recovered successfully. We consider this a sig-
nificant achievement considering that most systems crash upon
receiving a DUE (which can be considered as a 0% success
rate). Moreover, there is still room for improvement with a
more sophisticated use of side information. We acknowledge,
however, that in many scenarios it may be preferable to crash
deterministically upon encountering a DUE, rather than con-
tinuing workload execution without a guarantee of correctness.
We outlined a general approach to coping with this issue for
applications that are not approximation-friendly or algorith-
mically error-tolerant. Promising SWD-ECC research topics
include approaches for data memories, instruction memories
with other ISAs, and even use cases beyond memory systems
altogether. The ideas in this paper might be applied to the
storage, communications, and information theory fields, and
could find use in various domains of computing from embed-
ded and mobile to cloud and supercomputing. Our future work
on SWD-ECC seeks to exploit other types of side information
for heuristic recovery, derive theoretical properties, adapt the
approach to 64-bit ISAs, and study the impact on system
resiliency.
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