
Low-Cost Memory Fault Tolerance for IoT Devices

MARK GOTTSCHO, University of California, Los Angeles
IRINA ALAM, University of California, Los Angeles
CLAYTON SCHOENY, University of California, Los Angeles
LARA DOLECEK, University of California, Los Angeles
PUNEET GUPTA, University of California, Los Angeles

IoT devices need reliable hardware at low cost. It is challenging to e�ciently cope with both hard and soft
faults in embedded scratchpad memories. To address this problem, we propose a two-step approach: FaultLink
and Software-De�ned Error-Localizing Codes (SDELC). FaultLink avoids hard faults found during testing by
generating a custom-tailored application binary image for each individual chip. During software deployment-
time, FaultLink optimally packs small sections of program code and data into fault-free segments of the
memory address space and generates a custom linker script for a lazy-linking procedure. During run-time,
SDELC deals with unpredictable soft faults via novel and inexpensive Ultra-Lightweight Error-Localizing Codes
(UL-ELCs). These require fewer parity bits than single-error-correcting Hamming codes. Yet our UL-ELCs are
more powerful than basic single-error-detecting parity: they localize single-bit errors to a speci�c chunk of a
codeword. SDELC then heuristically recovers from these localized errors using a small embedded C library
that exploits observable side information (SI) about the application’s memory contents. SI can be in the form
of redundant data (value locality), legal/illegal instructions, etc. Our combined FaultLink+SDELC approach
improves min-VDD by up to 440 mV and correctly recovers from up to 90% (70%) of random single-bit soft
faults in data (instructions) with just three parity bits per 32-bit word.

CCS Concepts: • Computer systems organization → Embedded hardware; Embedded software; Reli-
ability; Processors and memory architectures; • Hardware → Process variations; Transient errors and
upsets; Aging of circuits and systems; • Mathematics of computing → Coding theory;

Additional Key Words and Phrases: scratchpad memory, fault tolerance, ECC, IoT, defects, soft errors, approxi-
mate computing

ACM Reference format:
Mark Gottscho, Irina Alam, Clayton Schoeny, Lara Dolecek, and Puneet Gupta. 2017. Low-Cost Memory Fault
Tolerance for IoT Devices. ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1 (July 2017), 25 pages.
DOI: X.XXX/XXX_X

This article will be presented in the ACM/IEEE International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES) in Seoul, South Korea, October 15-20, 2017, and will appear as part of an ESWEEK special
issue in ACM TECS.
This work was supported by the 2016 USA Qualcomm Innovation Fellowship, the 2016 UCLA Dissertation Year Fellowship,
and NSF grant numbers CCF-1029030 and CCF-1150212.
Authors’ emails: {mgottscho,irina1,cschoeny}@ucla.edu, {dolecek,puneet}@ee.ucla.edu.
Authors’ addresses: M. Gottscho, I. Alam, C. Schoeny, L. Dolecek, and P. Gupta, Electrical Engineering Department, University
of California at Los Angeles (UCLA), 420 Westwood Plaza, Los Angeles, CA 90095, USA.
M. Gottscho (current address), Google, 1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA.

1

AUTHORS' COPY dated July 14, 2017
To appear in the ACM/IEEE International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES) and will be published in the ACM Transactions on Embedded Computing
Systems (TECS) in the ESWEEK special issue.

mailto:mgottscho@ucla.edu
mailto:irina1@ucla.edu
mailto:cschoeny@ucla.edu
mailto:dolecek@ee.ucla.edu
mailto:puneet@ee.ucla.edu

1 INTRODUCTION
For embedded systems at the edge of the Internet-of-Things (IoT), hardware design is driven by the
need for the lowest possible cost and energy consumption, which are both are strongly a�ected by
on-chip memories [23]. Memories consume signi�cant chip area and are particularly susceptible
to parameter variations and defects resulting from the manufacturing process [32]. Meanwhile,
much of an embedded system’s energy is consumed by on-chip SRAM memory, particularly during
sleep mode. The embedded systems community has thus increasingly turned to software-managed
on-chip memories – also known as scratchpad memories (SPMs) [41] – due to their 40% lower
energy as well as latency and area bene�ts compared to hardware-managed caches [10].

It is challenging to simultaneously achieve low energy, high reliability, and low cost for embedded
memory. For example, an e�ective way to reduce on-chip SRAM power is to reduce the supply
voltage [25]. However, this causes cell hard fault rates to rise exponentially [57] and increases
susceptibility to radiation-induced soft faults, thus degrading yield at low voltage and increasing
cost. Thus, designers traditionally include spare rows and columns in the memory arrays [51]
to deal with manufacturing defects and employ large voltage guardbands [21] to ensure reliable
operation. Unfortunately, large guardbands limit the energy proportionality of memory, thus
reducing battery life for duty-cycled embedded systems [58], a critical consideration for the IoT.
Although many low-voltage solutions have been proposed for caches, fewer have addressed this
problem for scratchpads and embedded main memory.

Our goal in this work is to improve embedded software-managed memory reliability at minimal
cost; we propose a two-step approach. FaultLink �rst guards applications against known hard
faults, which then allows Software-De�ned Error-Localizing Codes (SDELC) to focus on dealing
with unpredictable soft faults. The key idea of this work is to �rst automatically customize
an application binary to individually accommodate each chip’s unique hard fault map with no
disruptions to source code, and second, to deal with single-bit soft faults at run-time using novel
Ultra-Lightweight Error-Localizing Codes (UL-ELC) with a software-de�ned error handler that
knows about the UL-ELC construction and implements a heuristic data recovery policy. Our
contributions are the following.

• We present FaultLink, a novel lazy link-time approach that extends the software con-
struction toolchain with new fault-tolerance features for software-managed/scratchpad
memories. FaultLink relies on hard fault maps for each software-controlled physical mem-
ory region that may be generated during manufacturing test or periodically during run-time
using built-in-self-test (BIST).
• We detail an algorithm for FaultLink that automatically produces custom hard fault-aware

linker scripts for each individual chip. We �rst compile the embedded program using
speci�c �ags to carve up the typical monolithic sections, e.g., .text, .data, stack, heap,
etc. FaultLink then attempts to optimally pack program sections into memory segments
that correspond to contiguous regions of non-faulty addresses.
• We propose SDELC, a hybrid hardware/software technique that allows the system to heuris-

tically recover from unpredictable single-bit soft faults in instruction and data memories,
which cannot be handled using FaultLink. SDELC relies on side information (SI) about appli-
cation memory contents, i.e., observable patterns and structure found in both instructions
and data. SDELC is inspired by our recently-proposed notion of Software-De�ned ECC
(SDECC) [20].
• We describe the novel class of Ultra-Lightweight Error-Localizing Codes (UL-ELC) that are

used by SDELC. UL-ELC codes are stronger than basic single-error-detecting (SED) parity,
yet they have lower storage overheads than a single-error-correcting (SEC) Hamming code.

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

2

Like SED, UL-ELC codes can detect single-bit errors, yet they can additionally localize them
to a chunk of the erroneous codeword. UL-ELC codes can be explicitly designed such that
chunks align with meaningful message context, such as the �elds of an encoded instruction.

By experimenting with both real and simulated test chips, we �nd that with no hardware changes,
FaultLink enables applications to run correctly on embedded memories using a min-VDD that can
be lowered by up to 440 mV. After FaultLink has avoided hard faults (that may include defects as
well as voltage-induced faults), our SDELC technique recovers from up to 90% of random single-bit
soft faults in 32-bit data memory words and up to 70% of errors in instruction memory using a 3-bit
UL-ELC code (9.375% storage overhead). SDELC can even be used to recover up to 70% of errors
using a basic SED parity code (3.125% storage overhead). In contrast, a full Hamming SEC code
incurs a storage overhead of 18.75%. Our combined FaultLink+SDELC approach could thus enable
more reliable IoT devices while signi�cantly reducing cost and run-time energy.

To the best of our knowledge, this is the �rst work to both (i) customize an application binary on a
per-chip basis by lazily linking at software deployment-time to accommodate the unique patterns of
hard faults in embedded scratchpad memories, and (ii) use error-localizing codes with software-de�ned
recovery to cope with random bit �ips at run-time.

This paper is organized as follows. Background material that is necessary to understand our
contributions is presented in Sec. 2. We then describe the high-level ideas of FaultLink and SDELC
to achieve low-cost embedded fault-tolerant memory in Sec. 3. FaultLink and SDELC are each
described in greater detail in Secs. 4 and 5, respectively. Both FaultLink and SDELC are evaluated
in Sec. 6. We provide an overview of related work in Sec. 7 before discussing other considerations
and opportunities for future work in Sec. 8. We conclude the paper in Sec. 9.

2 BACKGROUND
We present the essential background on scratchpad memory, the nature of SRAM faults, sections and
segments used by software construction linkers, and error-localizing codes needed to understand
our contributions.

2.1 Scratchpad Memories (SPMs)
Scratchpad memories (SPMs) are small on-chip memories that, like caches, can help speed up
memory accesses that exhibit spatial and temporal locality. Unlike caches, which are hardware-
managed and are thus transparent in the address space, data placement in scratchpads must be
orchestrated by software. This requires additional e�ort from the application programmer, who
must – with the help of tools like the compiler and linker – explicitly partition data into physical
memory regions that are distinct in the address space. Despite the programming di�culty, SPMs
can be more e�cient than caches. Banakar et al. showed that SPMs have on average 33% lower
area requirements and can reduce energy by 40% compared to equivalently-sized caches [10]. In
energy and cost-conscious embedded systems, SPMs are increasingly being used for this reason
and because they provide more predictable performance. In this paper, FaultLink is used to improve
the reliability/min-VDD of SPMs/software-managed main memory.

2.2 Program Sections and Memory Segments
The Executable and Linkable Format (ELF) is ubiquitous on Unix-based systems for representing
compiled object �les, static and dynamic shared libraries, as well as program executable images
in a portable manner [1]. ELF �les contain a header that speci�es the ISA, ABI, a list of program
sections and memory segments, and various other metadata.

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

3

Characterize hard fault locations

in embedded memories

for desired supply voltage

Manufacturing

process variation

and defects

Construct memory address

fault map

0x0000FF77

0x00120000

0x00120001

0x00120002

0x00120003

0x00110008

0x00120008

.text.foo

faulty region

Use FaultLink to build

custom-tailored application binary

that avoids hard faults by construction

Fabrication-time Test-time

Software deployment-time

(lazy link-time)

Fault Map

Program Image/Address Space

Run-time

.data, .bss

faulty region

stack

heap

faulty region

Data

Memory

Instruction

Memory
.text.main

00000000000000000000000001010110

11111111111111111111111100010111

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000001100001

00000000000000000000000000000010

00000000000000000000000000000000

00000000000000000011X00100100010M
e
m

o
ry

 r
e
a
d
s
 (

ti
m

e
)

Single-bit soft fault

Error-located region

Use SDELC to heuristically

recover from unpredictable soft errors
P

e
ri
o

d
ic

 a
g

in
g

 &
 w

e
a

ro
u

t
te

s
ti
n

g

w
it
h

 r
e

m
o

te
 s

o
ft

w
a

re
 u

p
d

a
te

s

Fig. 1. Our high-level approach to tolerating both hard (FaultLink) and so� (SDELC) faults in on-chip
scratchpad memories.

• A section is a contiguous chunk of bytes with an assigned name: sections can contain
instructions, data, or even debug information. For instance, the well-known .text section
typically contains all executable instructions in a program, while the .data section contains
initialized global variables.
• A segment represents a contiguous region of the memory address space (i.e., ROM, instruc-

tion memory, data memory, etc.). When a �nal output binary is produced, the linker maps
sections to segments. Each section may be mapped to at most one segment; each segment
can contain one or more non-overlapping sections.

The toolchain generally takes a section-centric view of a program, while at run-time the segment-
centric view represents the address space layout. Manipulating the mapping between program
sections and segments is the core focus of FaultLink.

2.3 Tolerating SRAM Faults
There are several types of SRAM faults. In this paper, we de�ne hard faults to include all recurring
and/or predictable failure modes that can be characterized via testing at fabrication time or in the

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

4

�eld. These include manufacturing defects, weak cells at low voltage, and in-�eld device/circuit
aging and wearout mechanisms [15]. A common solution to hard faults is to characterize memory,
generate a fault map, and then deploy it in a micro-architectural mechanism to hide the e�ects of
hard faults.

We de�ne soft faults to be unpredictable single-event upsets (SEUs) that do not generally reoccur at
the same memory location and hence cannot be fault-mapped. The most well-known and common
type of soft fault is the radiation-induced bit �ip in memory [13]. Soft faults, if detected and
corrected by an error-correcting code (ECC), are harmless to the system. In this paper, SDELC is
used to tolerate single-bit SEUs in a heuristic manner that has signi�cantly lower overheads than a
conventional ECC approach, yet can do more than basic SED parity detection.

2.4 Error-Correcting Codes (ECCs)
ECCs are mathematical techniques that transform message data stored in memory into codewords
using a hardware encoder to add redundancy for added protection against faults. When soft faults
a�ect codewords, causing bit �ips, the ECC hardware decoder is designed to detect and/or correct
a limited number of errors. ECCs used for random-access memories are typically based on linear
block codes.

The encoder implements a binary generator matrix G and the complementary decoder imple-
ments the parity-check matrix H to detect/correct errors. To encode a binary message ®m, one
multiplies its bit-vector by G to obtain the codeword ®c: ®mG = ®c . To decode, one multiplies the
stored codeword (which may have been corrupted by errors) with the parity-check matrix to obtain
the syndrome ®s , which provides error detection and correction information: H®cT = ®s . Typical ECCs
used for memory have the generator and parity-check matrices in systematic form, i.e., the message
bits are directly mapped into the codeword and the redundant parity bits are appended to the end
of the message. This makes it easy to directly extract message data in the common case when no
errors occur.

Typical ECC-based approaches can tolerate random bit-level soft faults but they quickly become
ine�ective when multiple errors occur due to hard faults. Meanwhile, powerful schemes like
ChipKill [14] have unacceptable overheads and are not suited for embedded memories. In this
work, we propose novel ECC constructions that have very low overheads, making them suitable
for low-cost IoT devices that may experience occasional single-bit SEUs.

2.5 Error-Localizing Codes
In 1963, Wolf et al. introduced error-localizing codes (ELC) that attempt to detect errors and identify
the erroneous �xed-length chunk of the codeword. Wolf established some fundamental bounds
[63] and studied how to create them using the tensor product of the parity-check matrices of
an error-detecting and an error-correcting code [62]. ELC has been adapted to byte-addressable
memory systems [17] but until now, they had not gained any traction in the systems community.

To the best of our knowledge, ELCs in the regime between SED and SEC capabilities has not
been previously studied. We describe the basics of Ultra-Lightweight ELC (UL-ELC) that lies in this
regime and apply speci�c constructions to recover from a majority of single-bit soft faults.

3 APPROACH
We propose FaultLink and SDELC that together form a novel hybrid approach to low-cost embedded
memory fault-tolerance. They speci�cally address the unique challenges posed by SPMs.

The high-level concept is illustrated in Fig. 1. At fabrication time, process variation and defects
may result in hard faults in embedded memories. During test-time, these are characterized and

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

5

maintained in a per-chip fault map that is stored in a database for later. When the system developer
later deploys the application software onto the devices, FaultLink is used to customize the binary
for each individual chip in a way that avoids its unique hard fault locations. Finally, at run-time,
unpredictable soft faults are detected, localized, and recovered heuristically using SDELC.

Note that FaultLink is not heuristic and therefore does not induce errors. On the other hand,
SDELC has a chance of introducing silent data corruption (SDC) if recovery turns out to be incorrect;
this consideration will be revisited later in the discussion. We brie�y explain the approaches of the
FaultLink and SDELC steps before going into greater detail for each.

3.1 FaultLink: Avoiding Hard Faults at Link-Time
Conventional software construction toolchains assume that there is a contiguous memory address
space in which they can place program code and data. For embedded targets, the address space is
often partitioned into a region for instructions and a region for data. On a chip containing hard
faults, however, the speci�ed address space can contain faulty locations. With a conventional
compilation �ow, a program could fetch, read, and/or write from these unreliable locations, making
the system unreliable.

FaultLink is a modi�cation to the traditional embedded software toolchain to make it memory
“fault-aware.” At chip test-time, or periodically in the �eld using built-in-self-test (BIST), the
software-managed memories are characterized to identify memory addresses that contain hard
faults.

At software deployment time – i.e., when the application is actually programmed onto a particular
device – FaultLink customizes the application binary image to work correctly on that particular
chip given the fault map as an input. FaultLink does this by linking the program to guarantee that
no hard-faulty address is ever read or written at runtime. However, the fault mapping approach
taken by FaultLink cannot avoid random bit �ips at run-time; these are instead addressed at low
cost using SDELC.

3.2 So�ware-Defined Error-Localizing Codes (SDELC): Recovering So� Faults at
Run-Time

Typically, either basic SED parity is used to detect random single-bit errors or a Hamming SEC code
is used to correct them. Unfortunately, Hamming codes are expensive for small embedded memories:
they require six bits of parity per memory word size of 32 bits (an 18.75% storage overhead). On
the other hand, basic parity only adds one bit per word (3.125% storage overhead), but without
assistance by other techniques it cannot correct any errors.

SDELC is a novel solution that lies in between these regimes. A key component is the new class
of Ultra-Lightweight Error-Localizing Codes (UL-ELCs). UL-ELCs have lower storage overheads than
Hamming codes: they can detect and then localize any single-bit error to a chunk of a memory
codeword. We construct distinct UL-ELC codes for instruction and data memory that allows a
software-de�ned recovery policy to heuristically recover the error by applying di�erent semantics
depending on the error location. The policies leverage available side information (SI) about memory
contents to choose the most likely candidate codeword resulting from a localized bit error. In this
manner, we attempt to correct a majority of single-bit soft faults without resorting to a stronger
and more costly Hamming code. SDELC can even be used to recover many errors using a basic
SED parity code. Unlike our recent preliminary work on general-purpose Software-De�ned ECC
(SDECC) [20], SDELC focuses on heuristic error recovery that is suitable for microcontroller-class
IoT devices.

We now discuss FaultLink in greater depth before revisiting the details of SDELC in Sec. 5.

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

6

(a) Chip floorplan (b) Board

Fig. 2. Test chip and board used to collect hard fault maps for FaultLink.

(a) 750 mV (b) 700 mV (c) 650 mV

Fig. 3. Measured voltage-induced hard fault maps of the 176 KB data memory for one test chip. Black pixels
represent faulty byte locations.

4 FAULTLINK
We motivate FaultLink with fault mapping experiments on real test chips, describe the overall
FaultLink toolchain �ow, and present the details of the Section-Packing problem that FaultLink
solves.

4.1 Test Chip Experiments
To motivate FaultLink, we characterized the voltage scaling-induced fault maps for eight micro-
controller test chips. Each chip contains a single ARM Cortex-M3 core, 176 KB of on-chip data
memory, 64 KB of instruction memory. They were fabricated in a 45nm SOI technology with
dual-Vth libraries [3, 26, 59]; the chip �oorplan and test board are shown in Fig. 2. The locations of
voltage-induced SRAM hard faults in the data memory for one chip are shown in Fig. 3 as black
dots. Its byte-level fault address map appears as follows:

0x200057D6

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

7

Fig. 4. FaultLink procedure: given program source code and a memory fault map, produce a per-chip custom
binary executable that will work in presence of known hard fault locations in the SPMs.

0x200086B4
...
0x2002142F
0x200247A9.

Without further action, this chip would be useless at low voltage for running embedded ap-
plications; either the min-VDD would be increased, compromising energy, or the chip would be
discarded entirely. We now describe how the FaultLink toolchain leverages the fault map to produce
workable programs in the presence of potentially many hard faults.

4.2 Toolchain
FaultLink utilizes the standard GNU tools for C/C++ without modi�cation. The overall procedure
is depicted in Fig. 4. The programmer compiles code into object �les but does not proceed to link
them. The code must be compiled using GCC’s -ffunction-sections and -fdata-sections �ags,
which instruct GCC to place each subroutine and global variable into their own named sections in
the ELF object �les. Our FaultLink tool then uses the ELFIO C++ library [27] to parse the object
�les and extract section names, sizes, etc. FaultLink then produces a customized binary for the
given chip by solving the Section-Packing problem.

4.3 Fault-Aware Section-Packing
Section-Packing is a variant of the NP-complete Multiple Knapsacks problem. We formulate it as an
optimization problem and derive an analytical approximation for the probability that a program’s
sections can be successfully packed into a memory containing hard faults.

4.3.1 Problem Formulation. Given a disjoint set of contiguous program sections M and a set of
disjoint hard fault-free contiguous memory segments N , we wish to pack each program section
into exactly one memory segment such that no sections overlap or are left unpacked. If we �nd a
solution, we output the M → N mapping; otherwise, we cannot pack the sections (the program
cannot accommodate that chip’s fault map). An illustration of the Section-Packing problem is
shown in Fig. 5, with the program sections on the top and fault-free memory regions on the bottom.

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

8

.
t
e
x
t
.
p
r
i
n
t
f

Program Sections

.
t
e
x
t
.
f
o
o

.
t
e
x
t
.
m
a
i
n

.
d
a
t
a
.
m
y
s
t
r
u
c
t

stack & heap

.
d
a
t
a
.
m
y
a
r
r
a
y

FaultLink

Section-Packing

Optimizer

expanded

stack & heap

Non-Faulty

Data Memory Segments

Non-Faulty

Instruction Memory Segments

Fig. 5. FaultLink a�empts to pack contiguous program sections into contiguous disjoint segments of non-
faulty memory. Gray memory segments are occupied by mapped sections, while white segment areas are
free space. The depicted gaps between some of the gray/white boxes indicate faulty memory regions that are
not available for section-packing.

Letmi be the size of program section i in bytes and nj be the size of memory segment j, yj be 1
if segment j contains at least one section, otherwise let it be 0, and zi j be 1 if section i is mapped to
segment j, otherwise let it be 0. Then the optimization problem is formulated as an integer linear
program (ILP) as follows:

Minimize:
∑
j ∈N

yj

Subject to:∑
i ∈M

mi · zi j ≤ nj · yj ∀j ∈ N∑
j ∈N

zi j = 1 ∀i ∈ M

zi j = 0 or 1 ∀i ∈ M ; j ∈ N
yj = 0 or 1 ∀j ∈ N .

We solve this ILP problem using CPLEX. We use an objective that minimizes the number of packed
segments because the solution naturally avoids memory regions that have higher fault densities. The
optimization will be feasible only if every program section gets packed in the non-faulty segments
of the memory and the total size of all the sections packed in one non-faulty segment is no more
than the size of that particular segment. (Note that other objectives will produce equally-valid
section-packing solutions in terms of correctness; the important fault-avoidance constraints are

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

9

�xed.) To pack any benchmark onto any fault map that we evaluated, CPLEX required no more
than 14 seconds in the worst case; if a solution cannot be found or if there are few faults, typically
FaultLink will complete much quicker. If a faster solution is needed, a greedy ILP relaxation can be
used.

4.3.2 Analytical Section-Packing Estimation. We observe that the size of the maximum contiguous
program section often comprises a signi�cant portion of the overall program size, and that most
FaultLink section-packing failures occur when the largest program section is larger than all non-
faulty memory segments.

Therefore, we estimate the FaultLink success rate based on the probability distribution of the
longest consecutive sequences of coin �ips as provided by Schilling [50]. Let Lk be a random variable
representing the length of the largest run of heads in k independent �ips of a biased coin (with p as
the probability of heads). The following equation is an approximation for the limiting behavior of
Lk , i.e., the probability that longest run of heads is less than x and assuming k(1 − p) � 1 [50]:

P(Lk < x) ≈ e−p
(x−logp−1 (k (1−p)))

. (1)

We apply Schilling’s above formula to estimate the behavior of FaultLink. Let b be the i.i.d.
bit-error-rate and s be the probability of no errors occurring in a 32-bit word, i.e., s = (1 − b)32. Let
size be the memory size in bytes andmmax be the size in bytes of the largest contiguous program
section. Using Eqn. 1, we plug in p = s , k = size/4, and x =mmax/4. Then, we can approximate the
probability of there not being a memory segment that is large enough to store the largest program
section:

P
(
Lsize/4 <

mmax

4

)
≈ e−s(

mmax
4 −logs−1 (size4 (1−s)))

. (2)

This formula will be used in the evaluation to estimate FaultLink yield and min-VDD.

5 SDELC
We describe the SDELC architecture, the concept of UL-ELC codes, and two SDELC recovery
policies for instruction and data memory.

5.1 Architecture
The SDELC architecture is illustrated in Fig. 6 for a system with split on-chip instruction and data
SPMs (each with its own UL-ELC code) and a single-issue core that has an in-order pipeline. We
assume that hard faults are already mitigated using FaultLink.

When a codeword containing a single-bit soft fault is read, the UL-ELC decoder detects and
localizes the error to a speci�c chunk of the codeword and places error information in a Penalty
Box register (shaded in gray in the �gure). A precise exception is then generated, and software
traps to a handler that implements the appropriate SDELC recovery policy for instructions or data,
which we will discuss shortly.

Once the trap handler has decided on a candidate codeword for recovery, it must correctly commit
the state in the system such that it appears as if there was no memory control �ow disruption. For
instruction errors, because the error occurred during a fetch, the program counter (pc) has not
yet advanced. To complete the trap handler, we write back the candidate codeword to instruction
memory. If it is not accessible by the load/store unit, one could use hardware debug support such
as JTAG. We then return from the trap handler and re-execute the previously-trapped instruction,
which will then cause the pc to advance and re-fetch the instruction that had been corrupted by
the soft error. On the other hand, data errors are triggered from the memory pipeline stage by
executing a load instruction. We write back the chosen candidate codeword to data memory to

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

10

UL-ELC

Encoder
Penalty Box

Registers

Error Status Regs.

SEGMENT

SERVICE_REQ

PHY_ADDR

ECC_ID

SDELC

support
UL-ELC

Decoder

Core

Instruction Memory Data Memory

UL-ELC

Encoder

UL-ELC

Decoder

32+r bits

Fetch Decode Execute Mem Writeback

Memory Port Memory Port

32 bits

32 bits

Single-Bit Soft Fault SEU

32 bits
Configuration Space

Register (CSR) Bus

DMEM BusIMEM Bus

P
re

c
is

e
 e

x
c
e
p

ti
o

n

32+r bits

Fig. 6. Architectural support for SDELC on an microcontroller-class embedded system. Hard faults that
would be managed by FaultLink are not shown.

scrub the error, update the register �le appropriately, and manually advance pc before returning
from the trap handler.

5.2 Ultra-Lightweight Error-Localizing Codes (UL-ELC)
Localizing an error is more useful than simply detecting it. If we determine the error is from a
chunk of length ` bits, there are only ` candidate codewords for which a single-bit error could have
produced the received (corrupted) codeword.

A naïve way of localizing a single-bit error to a particular chunk is to use a trivial segmented
parity code, i.e., we can assign a dedicated parity-bit to each chunk. However, this method is very
ine�cient because to create C chunks we need C parity bits: essentially, we have simply split up
memory words into smaller pieces.

We create simple and custom Ultra-Lightweight ELCs (UL-ELCs) that – given r redundant parity
bits – can localize any single-bit error to one of C = 2r − 1 possible chunks. This is because there
are 2r − 1 distinct non-zero columns that we can use to form the parity-check matrix H for our
UL-ELC (for single-bit errors, the error syndrome is simply one of the columns of H). To create a
UL-ELC code, we �rst assign to each chunk a distinct non-zero binary column vector of length
r bits. Then each column of H is simply �lled in with the corresponding chunk vector. Note that
r of the chunks will also contain the associated parity-bit within the chunk itself; we call these
shared chunks, and they are precisely the segments whose columns in H have a Hamming weight
of 1. Since there are r shared chunks, there must be 2r − r − 1 unshared chunks, which each consist

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

11

of only data bits. Shared chunks are unavoidable because the parity bits must also be protected
against faults, just like the message bits.

UL-ELCs form a middle-ground between basic parity SED error-detecting codes (EDCs) and
Hamming SEC ECCs. In the former case, r = 1, so we have a C = 1 monolithic chunk (H is a row
vector of all ones). In the latter case, H uses each of the 2r − 1 possible distinct columns exactly
once: this is precisely the (2r − 1, 2r − r − 1) Hamming code. An UL-ELC code has a minimum
distance of two bits by construction to support detection and localization of single-bit errors. Thus,
the set of candidate codewords must also be separated from each other by a Hamming distance of
exactly two bits. (A minimum codeword distance of two bits is required for SED, while three bits
are needed for SEC, etc.)

For an example of an UL-ELC construction, consider the following Hexample parity-check matrix
with nine message bits and r = 3 parity bits:

Hexample =

S1 S2 S3 S4 S4 S5 S6 S6 S7 S5 S6 S7
d1 d2 d3 d4 d5 d6 d7 d8 d9 p1 p2 p3[]c1 1 1 1 0 0 1 0 0 0 1 0 0

c2 1 1 0 1 1 0 1 1 0 0 1 0
c3 1 0 1 1 1 0 0 0 1 0 0 1

,

where di represents the ith data bit, pj is the jth redundant parity bit, ck is the kth parity-check
equation, and Sl enumerates the distinct error-localizing chunk that a given bit belongs to.
Because r = 3, there are N = 7 chunks. Bits d1, d2, and d3 each have the SEC property because no
other bits are in their respective chunks. Bits d4 and d5 make up an unshared chunk S4 because no
parity bits are included in S4. The remaining data bits belong to shared chunks because each of them
also includes at least one parity bit. Notice that any data or parity bits that belong to the same chunk
Sl have identical columns of H, e.g., d7, d8, and p2 all belong to S6 and have the column [0; 1; 0].
 The two key properties of UL-ELC (that do not apply to generalized ELC codes) are: (i) the length
of the data message is independent of r , and (ii) each chunk can be an arbitrary length. The freedom
to choose the length of the code and chunk sizes allow the UL-ELC design to be highly adaptable.
Additionally, UL-ELC codes can o�er SEC protection on up to 2r − r − 1 selected message bits by
having the unshared chunks each correspond to a single data bit.

5.3 Recovering SEUs in Instruction Memory

 We describe an UL-ELC construction and recovery policy for dealing with single-bit soft faults
in instruction memory. The code and policy are jointly crafted to exploit SI about the ISA itself.
Our SDELC implementation targets the open-source and free 64-bit RISC-V (RV64G) ISA [60], but
the approach is general and could apply to any other �xed-length or variable-length RISC or
CISC ISA. Note that although RISC-V is actually a little-endian architecture, for sake of clarity
we use big-endian in this paper.
 Our UL-ELC construction for instruction memory has seven chunks that align to the �nest-grain
boundaries of the di�erent �elds in the RISC-V codecs. These codecs, the chunk assignments, and
the complete parity-check matrix H are shown in Table 1. The bit positions -1, -2, and -3 correspond
to the three parity bits that are appended to a 32-bit instruction in memory. The opcode, rd, funct3,
and rs1 �elds are the most commonly used – and potentially the most critical – among the possible
instruction encodings, so we assign each of them a dedicated chunk that is unshared with the parity
bits. The �elds which vary more among encodings are assigned to the remaining three shared
chunks, as shown in the �gure. The recovery policy can thus distinguish the impact of an error in

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

12

Table 1. Proposed 7-Chunk UL-ELC Construction with r = 3 for Instruction Memory (RV64G ISA v2.0 [60])

bit→ 31 27 26 25 24 20 19 15 14 12 11 7 6 0 -1 -3
Type-U imm[31:12] rd opcode parity
Type-
UJ

imm[20|10:1|11|19:12] rd opcode parity

Type-I imm[11:0] rs1 funct3 rd opcode parity
Type-
SB

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode parity

Type-S imm[11:5] rs2 rs1 funct3 imm[4:0] opcode parity
Type-R funct7 rs2 rs1 funct3 rd opcode parity
Type-
R4

rs3 funct2 rs2 rs1 funct3 rd opcode parity

Chunk C1 (shared) C2 (shared) C3 (shared) C4 C5 C6 C7 C3 C2 C1

Parity- 00000 00 11111 00000 111 11111 1111111 1 0 0
Check 00000 11 00000 11111 000 11111 1111111 0 1 0
H 11111 00 00000 11111 111 00000 1111111 0 0 1

1E+0

1E-1

1E-2

1E-3

1E-4

1E+0

1E-1

1E-2

1E-3

1E-4

1E-5

1E-6R
e
la

ti
v
e
 F

re
q

.
o

f

S
ta

ti
c
 R

V
6
4
G

 I
n

s
t.

s
b
b
l
t
f
l
d
b
g
e
s
u
b
a
n
d
i

l
b
u
j
a
l
r

a
d
d
i
w

s
w
s
l
l
i

b
n
e
l
w
l
u
i
a
d
d
b
e
q
j
a
l
s
d
l
d
a
d
d
i

Each shaded line

is a distinct benchmark

Black line is geometric

mean over all benchmarks

Instruction Mnemonic

Fig. 7. The relative frequencies of static instructions roughly follow power law distributions. Results shown
are for RISC-V with 20 SPEC CPU2006 benchmarks; we observed similar trends for MIPS and Alpha, as well
as dynamic instructions.

di�erent parts of the instruction. For example, when a fault a�ects shared chunk C1, the fault is
either in one of the �ve MSBs of the instruction, or in the last parity bit. Conversely, when a fault
is localized to unshared chunk C7 in Table 1, the UL-ELC decoder can be certain that the opcode
�eld has been corrupted.

Consider another example with a fault in the unshared chunk C6 that guards the rd destination
register address �eld for most instruction codecs. Suppose bit 7 (the least-signi�cant bit of chunk
C6/rd) is �ipped by a fault. Assume the original instruction stored in memory was 0x0000beef,
which decodes to the assembly code jal t4, 0xb000. The 5-bit rd �eld is protected with our
UL-ELC construction using a dedicated unshared chunk C6. Thus, the candidate messages are the
following instructions:

<0x0000b66f> jal a2, 0xb000
<0x0000ba6f> jal s4, 0xb000
<0x0000beef> jal t4, 0xb000
<0x0000bc6f> jal s8, 0xb000
<0x0000bf6f> jal t5, 0xb000.

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

13

Our instruction recovery policy can decide which destination register is most likely for the jal
instruction based on program statistics collected a priori via static or dynamic pro�ling (the SI).
The instruction recovery policy consists of three steps.

• Step 1. We apply a software-implemented instruction decoder to �lter out any candidate
messages that are illegal instructions. Most bit patterns decode to illegal instructions in
three RISC ISAs we characterized: 92.33% for RISC-V, 72.44% for MIPS, and 66.87% for Alpha.
This can be used to dramatically improve the chances of a successful SDELC recovery.
• Step 2. Next, we estimate the probability of each valid message using a small pre-computed

lookup table that contains the relative frequency that each instruction appears. We �nd
that the relative frequencies of legal instructions follow power-law distribution, as shown
by Fig. 7. This is used to favor more common instructions.
• Step 3. We choose the instruction that is most common according to our SI lookup table. In

the event of a tie, we choose the instruction with the longest leading-pad of 0s or 1s. This is
because in many instructions, the MSBs represent immediate values (as shown in Table 1).
These MSBs are usually low-magnitude signed integers or they represent 0-dominant
function codes.

If the SI is strong, then we would expect to have a high chance of correcting the error by choosing
the right candidate.

5.4 Recovering SEUs in Data Memory
In general-purpose embedded applications, data may come in many di�erent types and structures.
Because there is no single common data type and layout in memory, we propose to simply use
evenly-spaced UL-ELC constructions and grant the software trap handler additional control about
how to recover from errors, similar to the general idea from SuperGlue [54].

We build SDELC recovery support into the embedded application as a small C library. The
application can push and pop custom SDELC error handler functions onto a registration stack. The
handlers are de�ned within the scope of a subroutine and optionally any of its callees and can
de�ne speci�c recovery behaviors depending on the context at the time of error. Applications can
also enable and disable recovery at will.

When the application does not disable recovery nor specify a custom behavior, all data memory
errors are recovered using a default error handler implemented by the library. The default handler
computes the average Hamming distance to nearby data in the same 64-byte chunk of memory
(similar to taking the intra-cacheline distance in cache-based systems). The candidate with the
minimum average Hamming distance is selected. This policy is based on the observation that
spatially-local and/or temporally-local data tends to also be correlated, i.e., it exhibits value locality
[30] that has been used in numerous works for cache and memory compression [5, 42, 66]. The
Hamming distance is a good measure of data correlation, as shown later in Fig. 13.

The application-de�ned error handler can specify recovery rules for individual variables within
the scope of the registered subroutine. They include globals, heap, and stack-allocated data. This is
implemented by taking the runtime address of each variable requiring special handling. For instance,
an application may wish critical data structures to never be recovered heuristically; for these, the
application can choose to force a crash whenever a soft error impacts their memory addresses. The
SDELC library support can increase system reliability, but the programmer is required to spend
e�ort annotating source code for error recovery. This is similar to annotation-based approaches
taken by others for various purposes [11, 12, 19, 31, 47, 67].

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

14

(a) Chip 1 (b) Chip 2

Fig. 8. Result from applying FaultLink to the sha benchmark for two real test chips’ 64 KB instruction memory
at 650 mV.

6 EVALUATION
We evaluate FaultLink and SDELC primarily in terms of their combined ability to proactively avoid
hard faults and then heuristically recover from soft faults in software-managed memories.

6.1 Hard Fault Avoidance using FaultLink
We �rst demonstrate how applications can run on real test chips at low voltage with many hard
faults in on-chip memory using FaultLink, and then evaluate the yield bene�ts at low voltage for a
synthetic population of chips.

6.1.1 Voltage Reduction on Real Test Chips. We �rst apply FaultLink to a set of small embedded
benchmarks that we build and run on eight of our microcontroller-class 45nm “real test chips.”
Each chip has 64 KB of instruction memory and 176 KB of data memory. The �ve benchmarks are
blowfish and sha from the mibench suite [22] as well as dhrystone, matmulti and whetstone.
We characterized the hard voltage-induced fault maps of each test chip’s SPMs in 50 mV increments
from 1 V (nominal VDD) down to 600 mV using March-SS tests [24] and applied FaultLink to each
benchmark for each chip individually at every voltage. Note that the standard C library provided
with the ARM toolchain uses split function sections, i.e., it does not have a monolithic .text section.
For each FaultLink-produced binary that could be successfully packed, we ran them to completion
on the real test chips. The FaultLink binaries were also run to completion on a simulator to verify
that no hard fault locations are ever accessed.

FaultLink-packed instruction SPM images of the sha benchmark for two chips are shown in
Fig. 8 with a runtime VDD of 650 mV. There were about 1000 hard-faulty byte locations in each
SPM (shown as black dots). Gray regions represent sha’s program sections that were mapped into
non-faulty segments (white areas).

We observe that FaultLink produced a unique binary for each chip. Unlike a conventional binary,
the program code is not contiguous in either chip because the placements vary depending on the
actual fault locations. In all eight test chips, we noticed that lower addresses in the �rst instruction
SPM bank are much more likely to be faulty at low voltage, as seen in Fig. 8. This could be caused
either by the design of the chip’s power grid, which might have induced a voltage imbalance

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

15

500

600

700

800

900

1000

1100

blowfish

dhrystone

matmulti sha

whetstone

blackscholes fft

inversek2j
jmeint

jpeg
sobel

M
in

-V
D

D
 a

t
9

9
%

 Y
ie

ld
 (

m
V

)

FaultLink 128 KB inst/data (analytical)

FaultLink 256 KB inst/data (analytical)

FaultLink 512 KB inst/data (analytical)

FaultLink 1 MB inst/data (analytical)

FaultLink 2 MB inst/data (analytical)

FaultLink 4 MB inst/data (analytical)

FaultLink (empirical)

No faults (empirical)

Nominal

RISC-V (monolithic C library sections)ARM (split C library sections)

Fig. 9. Achievable min-VDD for FaultLink at 99% yield. Bars represent the analytical lower bound from Eqn. 2
and circles represent our actual results using Monte Carlo simulation for 100 synthetic fault maps.

between the two banks, or by within-die/within-wafer process variation. Chip 1 (Fig. 8a) also
appears to have a cluster of weak rows in the �rst instruction bank. Because FaultLink chooses a
solution with the sections packed into as few segments as possible, we �nd that the mapping for
both chips prefers to use the second bank, which tends to have larger segments.

We achieved an average min-VDD of 700 mV for the real test chips. This is a reduction of 125
mV compared to the average non-faulty min-VDD of 825 mV, and 300 mV lower than the o�cial
technology speci�cation of 1 V. FaultLink did not require more than 14 seconds on our machine to
optimally section-pack any program for any chip at any voltage.

6.1.2 Yield at Min-VDD for Synthetic Test Chips. To better understand the min-VDD and yield
bene�ts of FaultLink using a wider set of benchmarks and chip instances, we created a series of
randomly-generated synthetic fault maps. For instruction and data SPM capacities of 128 KB, 256
KB, 512 KB, 1 MB, 2 MB, and 4 MB, we synthesized 100 fault maps for each in 10 mV increments
for a total of 700 “synthetic test chips.” We used detailed Monte Carlo simulation of SRAM bit-cell
noise margins in the corresponding 45 nm technology. Six more benchmarks were added from
the AxBench approximate computing C/C++ suite [67] that are too big to �t on the real test
chips: blackscholes, fft, inversek2j, jmeint, jpeg, and sobel. These AxBench benchmarks
were compiled for the open-source 64-bit RISC-V (RV64G) instruction set v2.0 [60] and privileged
speci�cation v1.7 using the o�cial tools. This is because unlike the standard C library for our ARM
toolchain, the library included with the RISC-V toolchain has a monolithic .text section. This
allows us to consider the impact of the library sections on min-VDD.

The expected min-VDD for 99% chip yield across 100 synthetic chip instances for seven memory
capacities is shown in Fig. 9. The vertical bars represent our analytical estimates calculated using
Eqn. 2. The red line represents the empirical worst case out of 100 synthetic test chips, while the
blue line is the lowest non-faulty voltage in the worst case of the 100 chips. Finally, the green line
represents the nominal VDD of 1 V.

FaultLink reduces min-VDD for the synthetic test chips at 99% yield by up to 450 mV with respect
to the nominal 1 V and between 370 mV and 430 mV with respect to the lowest non-faulty voltage.
All but jpeg from the AxBench suite were too large to �t in the smaller SPM sizes (hence the

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

16

Section Number

10
0

10
1

10
2

10
3

10
4

S
e

c
ti
o

n
 S

iz
e

 (
B

y
te

s
)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

blowfish_arm (.rodata.ORIG_S)

dhrystone_arm (.text)

matmulti_arm (.bss)

sha_arm (._check_stack)

whetstone_arm (.text)

blackscholes_riscv (.text)

fft_riscv (.text)

inversek2j_riscv (.text)

jmeint_riscv (.text)

jpeg_riscv (.text)

sobel_riscv (.text)

riscv

(monolithic

C library

sections)

arm

(split

C library

sections)

Fig. 10. Distribution of program section sizes. Packing the largest section into a non-faulty contiguous
memory segment is the most di�icult constraint for FaultLink to satisfy and limits min-VDD.

“missing” bars and points). When the memory size is over-provisioned for the smaller programs,
min-VDD decreases moderately because the segment size distribution does not have a strong
dependence on the total memory size.

The voltage-scaling limits are nearly always determined by the length of the longest program
section, which must be packed into a contiguous fault-free memory segment. This is strongly
indicated by the close agreement between the empirical min-VDDs and the analytical estimates,
the latter of which had assumed the longest program section is the cause of section-packing failure.

To examine this further, the program section size distribution for each benchmark is depicted in
Fig. 10. The name of the largest section is shown in the legend for each benchmark.

We observe all distributions have long tails, i.e., most sections are very small but there are a few
sections that are much larger than the rest. We con�rm that the largest section for each benchmark –
labeled in the �gure legend – is nearly always the cause of failure for the FaultLink section-packing
algorithm at low voltage when many faults arise. Recall that the smaller ARM-compiled benchmarks
have split C library function sections, while the AxBench suite that was compiled for RISC-V has
a C library with a monolithic .text section; we observe that the latter RISC-V benchmarks have
signi�cantly longer section-size tails than the former benchmarks. This is why the AxBench suite
does not achieve the lowest min-VDDs in Fig. 9. Notice that program size is not a major factor: jpeg
for RISC-V is similar in size to the ARM benchmarks, but it still does not match their min-VDDs. If
the RISC-V standard library had used split function sections, the AxBench min-VDDs would be
signi�cantly lower. For instance, jpeg compiled on RISC-V achieves a min-VDD of 750mV for 128
KB memory, while on ARM (not depicted) it achieves a min-VDD of 660mV.

FaultLink does not require any hardware changes; thus, energy-e�ciency (voltage reduction)
and cost (yield at given VDD) for IoT devices can be considerably improved.

6.2 So� Fault Recovery using SDELC
SDELC guards against unpredictable soft faults at run-time that cannot be avoided using FaultLink.
To evaluate SDELC, Spike was modi�ed to produce representative memory access traces of all 11
benchmarks as they run to completion. Each trace consists of randomly-sampled memory accesses

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

17

0

0.2

0.4

0.6

0.8

1

bl
ac

ks
ch

ol
es

bl
ow

fis
h

dh
ry

st
on

e fft

in
ve

rs
ek

2j

jm
ei
nt

jp
eg

m
at

m
ul
ti

sh
a

so
be

l

w
he

ts
to

ne

av
g.

 d
at

a

bl
ac

ks
ch

ol
es

bl
ow

fis
h

dh
ry

st
on

e fft

in
ve

rs
ek

2j

jm
ei
nt

jp
eg

m
at

m
ul
ti

sh
a

so
be

l

w
he

ts
to

ne

av
g.

 in
st
.

A
v
g
.
R

e
c
o
v
.
R

a
te

r=1

r=2

r=3

Data Memory Instruction Memory

Fig. 11. Average rate of recovery using SDELC from single-bit so� faults in data and instruction memory.
Benchmarks have already been protected against known hard fault locations using FaultLink. r is the number
of parity bits in our UL-ELC construction.

and their contents. We then analyze each trace o�ine using a MATLAB model of SDELC. For each
workload, we randomly select 1000 instruction fetches and 1000 data reads from the trace and
exhaustively apply all possible single-bit faults to each of them. Because FaultLink has already been
applied, there is never an intersection of both a hard and soft fault in our experiments.

We evaluate SDELC recovery of the random soft faults using three di�erent UL-ELC codes
(r = 1, 2, 3). Recall that the r = 1 code is simply a single parity bit, resulting in 33 candidate
codewords. (For basic parity, there are 32 message bits and one parity bit, so there are 33 ways
to have had a single-bit error.) For the data memory, the UL-ELC codes were designed with the
chunks being equally sized: for r = 2, there are either 11 or 12 candidates depending on the fault
position (34 bits divided into three chunks), while for r = 3 there are always �ve candidates (35
bits divided into seven chunks). For the instruction memory, chunks are aligned to important �eld
divisions in the RV64G ISA. Chunks for the r = 2 UL-ELC construction match the �elds of the
Type-U instruction codecs (the opcode being the unshared chunk). Chunks for the r = 3 UL-ELC
code align with �elds in the Type-R4 codec (as presented in Table 1). A successful recovery for
SDELC occurs when the policy corrects the error; otherwise, it fails by accidentally mis-correcting.

6.2.1 Overall Results. The overall SDELC results are presented in Fig. 11. The recovery rates
are relatively consistent over each benchmark, especially for instruction memory faults, providing
evidence of the general e�cacy of SD-ELC. One important distinction between the memory types
is the sensitivity to the number r of redundant parity bits per message. For the data memory, the
simple r = 1 parity yielded surprisingly high rates of recovery using our policy (an average of
68.2%). Setting r to three parity bits increases the average recovery rate to 79.2% thanks to fewer
and more localized candidates to choose from. On the other hand, for the instruction memory, the
average rate of recovery increased from 31.3% with a single parity bit to 69.0% with three bits.

These results are a signi�cant improvement over a guaranteed system crash as is traditionally
done upon error detection using single-bit parity. Moreover, we achieve these results using no more
than half the overhead of a Hamming SEC code, which can be a signi�cant cost savings for small
IoT devices. Based on our results, we recommend using r = 1 parity for data, and r = 3 UL-ELC
constructions to achieve 70% recovery for both memories with minimal overhead. Next, we analyze
the instruction and data recovery policies in more detail.

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

18

31 26 24 19 14 11 6 -1 -2 -3
0

0.2

0.4

0.6

0.8

1

Position of Single-Bit Error in Instruction Codeword

A
v
g

.
In

s
t.

 R
e

c
o

v
.

R
a

te

blackscholes

blowfish

dhrystone

fft

inversek2j

jmeint

jpeg

matmult (int)

sha

sobel

whetstone

C
2

C
3

C
4

C
5

C
6

C
7

C
1
C
2
C
3

C
1

Fig. 12. Sensitivity of SDELC instruction recovery to the actual position of the single-bit fault with the r = 3
UL-ELC construction.

6.2.2 Recovery Policy Analysis. The average instruction recovery rate as a function of bit error
position for all benchmarks is shown in Fig. 12. Error positions -1, -2, and -3 correspond to the
three parity bits in our UL-ELC construction from Table 1.

We observe that the SDELC recovery rate is highly dependent on the erroneous chunk. For
example, errors in chunkC7 – which protects the RISC-V opcode instruction �eld – have high rates
of recovery because the power-law frequency distributions of legal instructions are a very strong
form of side information. Other chunks with high recovery rates, such asC1 and C5, are often (part
of) the funct2, funct7, or funct3 conditional function codes that similarly leverage the power-law
distribution of instructions. Moreover, many errors that impact the opcode or function codes
cause several candidate codewords to decode to illegal instructions, thus �ltering the number of
possibilities that our recovery policy has to consider. For errors in the chunks that often correspond
to register address �elds (C3, C4, and C6), recovery rates are less because the side information on
register usage by the compiler is weaker than that of instruction relative frequency. However, errors
towards the most-signi�cant bits within these chunks recover more often than the least-signi�cant
bits because they can also correspond to immediate operands. Indeed, many immediate operands
are low-magnitude signed or unsigned integers, causing long runs of 0s or 1s to appear in encoded
instructions. These cases are more predictable, so we recover them frequently, especially for chunk
C1 which often represents the most-signi�cant bits of an encoded immediate value.

The sensitivity of SDELC data recovery to the mean candidate Hamming distance score for
two benchmarks is shown in Fig.13. White bars represent the relative frequency that a particular
Hamming distance score occurs in our experiments. The overlaid gray bars represent the fraction
of those scores that we successfully recovered using our policy.

When nearby application data in memory is correlated, the mean candidate Hamming distance is
low, and the probability that we successfully recover from the single-bit soft fault is high using our
Hamming distance-based policy. Because applications exhibit spatial, temporal, and value locality
[30] in memory, we thus recover correctly in a majority of cases. On the other hand, when data has
very low correlation – essentially random information — SDELC does not recover any better than
taking a random guess of the bit-error position within the localized chunk, as expected.

7 RELATED WORK
We summarize and di�erentiate our contributions from related work on fault-tolerant caches and
scratchpads, as well as error-localizing and unequal error protection codes.

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

19

Mean Average Hamming Distance Candidate Score

0 5 10 15 20 25 30

C
o

u
n

t

Mean Candidate Score
Successful Recovery

(a) blowfish

Mean Average Hamming Distance Candidate Score

0 5 10 15 20 25 30

C
o

u
n

t

Mean Candidate Score
Successful Recovery

(b) sha

Fig. 13. Sensitivity of SDELC data recovery to the mean candidate Hamming distance score for two bench-
marks and r = 1 parity code.

7.1 Fault-Tolerant Caches
There is an abundance of prior work on fault-tolerant and/or low-voltage caches. Examples include
PADded Cache [52], Gated-VDD [43], Process-Tolerant Cache [2], Variation-Aware Caches [40], Bit
Fix/Word Disable [61], ZerehCache [8], Archipelago [7], FFT-Cache [9], VS-ECC [6], Correctable
Parity Protected Cache (CPPC) [35], FLAIR [44], Macho [34], DPCS [18], DARCA [36], and oth-
ers (see related surveys by Mittal [37, 38]). These fault-tolerant cache techniques tolerate hard
faults/save energy by sacri�cing capacity or remapping physical data locations. This a�ects the
software-visible memory address space and hence they cannot be readily applied to SPMs.

Although they are cache-speci�c, some of the above techniques can be roughly compared with
FaultLink in terms of min-VDD. For instance, DPCS [18] achieves a similar min-VDD to FaultLink
of around 600 mV, while FLAIR [44] achieves a lower min-VDD (485 mV). We emphasize that the
above techniques cannot be applied to SPMs and are therefore not a valid comparison.

Similar to SDELC, CPPC [35] can recover random soft faults using SED parity. However, CPPC
requires additional hardware bookkeeping mechanisms that are in the critical path whenever data
is added, modi�ed, or removed from the cache (and again, their method is not applicable to SPMs).

7.2 Fault-Tolerant Scratchpads
The community has proposed various methods for tolerating variability and faults in SPMs that
relate closely to this work. Traditional fault avoidance techniques like dynamic bit-steering [4]
and strong ECC codes are too costly for small embedded memories. Meanwhile, spare rows and
columns cannot scale to handle many faults that arise from deep voltage scaling.

E-RoC [11] is a SPM fault-tolerance scheme that aims to dynamically allocate scratchpad space
to di�erent applications on a multi-core embedded SoC using a virtual memory approach. However,
it requires extensive hardware and run-time support. Several works [12, 19, 31, 55] propose to use
OS-based virtual memory to directly manage memory variations and/or hard faults, but they are
not feasible in low-cost IoT devices that lack support for virtual memory; nor do they guarantee
avoidance of known hard faults at software deployment time. Others have proposed to add small
fault-tolerant bu�ers that assist SPM checkpoint/restore [46], re-compute corrupted data upon

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

20

detection [49], build radiation-tolerant SPMs using hybrid non-volatile memory [39] and duplicate
data storage to guard against soft errors [28]; these are each orthogonal to this work.

There are several other prior works that relate closely to SDELC, although ours is the �rst to
propose heuristic recovery that lies in the regime between SED and SEC capabilities. Farbeh et
al. [16] propose to recover from soft faults in instruction memory by leveraging basic SED parity
combined with a software recovery handler that leverages duplicated instructions in memory. On
the other hand, our approach does not add any storage overhead to recover from errors (although
ours is heuristic). Volpato et al. [56] proposed a post-compilation binary patching approach to
improve energy e�ciency in SPMs that closely resembles the FaultLink procedure. However, that
work did not deal with faults in the SPMs. Sayadi et al. [49] uses SED parity to dynamically
recompute critical data that that is a�ected by single-bit soft faults. SDELC completely subsumes
that approach: the embedded SDELC library can heuristically recover data, recompute it if possible,
or opt to panic according to the application’s needs.

Unlike all known prior work, our combined FaultLink+SDELC approach can simultaneously
deal with both hard and soft SPM faults with minimal hardware changes compared to existing
IoT systems. Our low-cost approach can be used today with o�-the-shelf microcontrollers (minor
changes are needed to implement UL-ELC codes, however), and can improve yield and min-VDD.

8 DISCUSSION
We highlight several considerations and bene�cial use cases for FaultLink and SDELC and outline
directions for future work.

8.1 Performance Overheads
FaultLink does not add any performance overheads because it is purely a link-time solution, while
its impact on code size is less than 1%. SDELC recovery of soft faults, however, requires about 1500
dynamic instructions, which takes a few µs on a typical microcontroller (the number of instructions
varies depending on the speci�c recovery action taken and the particular UL-ELC code). However,
for low-cost IoT devices that are likely to be operated in low-radiation environments with only
occasional soft faults, the performance overhead is not a major concern. Simple recovery policies
could be implemented in hardware, but then software-de�ned �exibility and application-speci�c
support would be unavailable.

8.2 Memory Reliability Binning
FaultLink could bring signi�cant cost savings to both IoT manufacturers and IoT application
developers throughout the lifetime of the devices. Manufacturers could sell chips with hard defects
in their on-chip memories to customers instead of completely discarding them, which increases
yield. Customers could run their applications on commodity devices with or without hard defects
at lower-than-advertised supply voltages to achieve energy savings. Fault maps for each chip at
typical min-VDDs are small (bytes to KBs) and could be stored in a cloud database or using on-board
�ash. Several previous works have proposed heterogeneous reliability for approximate applications
to reduce cost [33, 45, 48, 53].

8.3 Coping with Aging and Wearout using FaultLink
Because IoT devices may have long lifetimes, aging becomes a concern for the reliability of the
device. Although explicit memory wearout patterns cannot be predicted in advance, fault maps could
be periodically sampled using BIST and uploaded to the cloud. Because IoT devices by de�nition
already require network connectivity for their basic functionality and to support remote software

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

21

updates and patching of security vulnerabilities, it is not disruptive to add remote FaultLink support
to adapt to aging patterns. Because running FaultLink remotely takes just a few seconds, customers
would not be a�ected any worse than the downtime already imposed by routine software updates
and the impact on battery life would be minimum.

8.4 Risk of SDCs from SDELC
SDELC introduces a risk of mis-correcting single-bit soft faults that cannot be avoided unless one
resorts to a full Hamming SEC code. However, for low-cost IoT devices running approximation-
tolerant applications, SDELC reduces the parity storage overhead by up to 6× compared to Hamming
while still recovering most single-bit faults. Similar to observations by others [29], we found that
no more than 7.2% of all single-bit instruction faults and 2.3% of data faults result in an intolerable
silent data corruption (SDC), i.e., an SDC with more than 10% output error [67]. The rest of the
faults are either successfully corrected, benign, or cause crashes/hangs. The latter are no worse
than crashes from commonly-used SED parity. Current SED-based systems’ reliability could be
improved with remote software updates to incorporate our techniques.

8.5 Directions for Future Work
The FaultLink and SDELC approaches can be further improved upon. One could extend FaultLink
to accommodate hard faults within packed sections to reduce min-VDD and increase reliability. For
FaultLink with instruction memory, one approach could be to insert unconditional jump instructions
to split up basic blocks, similar to a recent cache-based approach [65]. For FaultLink with data
memory, one could use smaller split stacks [64] and design a fault-aware malloc(). For SDELC,
one could design more sophisticated recovery policies using stronger forms of SI, and use pro�ling
methods to automatically annotate program regions that are likely to experience faults.

9 CONCLUSION
We proposed FaultLink and SDELC, two complementary techniques to improve memory resiliency
for IoT devices in the presence of hard and soft faults. FaultLink tailors a given program binary to
each individual embedded memory chip on which it is deployed. This improves both device yield
by avoiding manufacturing defects and saves runtime energy by accounting for variation-induced
parametric failures at low supply voltage. Meanwhile, SDELC implements low-overhead heuristic
error correction to cope with random single-event upsets in memory without the higher area and
energy costs of a full Hamming code. Directions for future work include designing a FaultLink-
compatible remote software update mechanism for IoT devices in the �eld and supporting new
failure modes with SDELC.

ACKNOWLEDGMENTS
The authors thank the anonymous CASES’17 program committee and reviewers for their detailed
and constructive feedback. This work was supported by the 2016 USA Qualcomm Innovation
Fellowship, the 2016 UCLA Dissertation Year Fellowship, and USA National Science Foundation
grants CCF-1029030 (Variability Expedition) and CCF-1150212 (CAREER). The authors thank Dr.
Fred Sala and Saptadeep Pal at UCLA for helpful discussions and Dr. Greg Wright from Qualcomm
Research for his feedback and guidance of this work.

REFERENCES
[1] 1995. Tool Interface Standard (TIS) Executable and Linking Format (ELF) Speci�cation (Version 1.2). (1995).

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

22

[2] Amit Agarwal, Bipul C. Paul, Hamid Mahmoodi, Animesh Datta, and Kaushik Roy. 2005. A Process-Tolerant Cache
Architecture for Improved Yield in Nanoscale Technologies. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 13, 1 (2005), 27–38.

[3] Yuvraj Agarwal, Alex Bishop, Tuck-Boon Chan, Matt Fotjik, Puneet Gupta, Andrew B. Kahng, Liangzhen Lai, Paul
Martin, Mani Srivastava, Dennis Sylvester, Lucas Wanner, and Bing Zhang. 2014. RedCooper: Hardware Sensor Enabled
Variability Software Testbed for Lifetime Energy Constrained Application. Technical Report. University of California,
Los Angeles (UCLA).

[4] F. J. Aichelmann. 1984. Fault-Tolerant Design Techniques for Semiconductor Memory Applications. IBM Journal of
Research and Development 28, 2 (1984), 177–183.

[5] Alaa Alameldeen and David Wood. 2004. Frequent Pattern Compression: A Signi�cance-Based Compression Scheme for
L2 Caches. Technical Report. University of Wisconsin, Madison.

[6] Alaa R. Alameldeen, Ilya Wagner, Zeshan Chishti, Wei Wu, Chris Wilkerson, and Shih-Lien Lu. 2011. Energy-E�cient
Cache Design Using Variable-Strength Error-Correcting Codes. In Proceedings of the ACM/IEEE International Symposium
on Computer Architecture (ISCA).

[7] Amin Ansari, Shuguang Feng, Shantanu Gupta, and Scott Mahlke. 2011. Archipelago: A Polymorphic Cache Design for
Enabling Robust Near-Threshold Operation. In Proceedings of the IEEE International Symposium on High Performance
Computer Architecture (HPCA).

[8] Amin Ansari, Shantanu Gupta, Shuguang Feng, and Scott Mahlke. 2009. ZerehCache: Armoring Cache Architectures
in High Defect Density Technologies. In Proceedings of the ACM/IEEE International Symposium on Microarchitecture
(MICRO).

[9] Abbas BanaiyanMofrad, Houman Homayoun, and Nikil Dutt. 2011. FFT-Cache: A Flexible Fault-Tolerant Cache
Architecture for Ultra Low Voltage Operation. In Proceedings of the ACM/IEEE International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (CASES).

[10] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and Peter Marwedel. 2002. Scratchpad Memory: A
Design Alternative for Cache On-Chip Memory in Embedded Systems. In Proceedings of the ACM/IEEE International
Symposium on Hardware/Software Codesign (CODES).

[11] Luis Angel D. Bathen and Nikil D. Dutt. 2011. E-RoC: Embedded RAIDs-on-Chip for Low Power Distributed Dynamically
Managed Reliable Memories. In Design, Automation, and Test in Europe (DATE).

[12] Luis Angel D. Bathen, Nikil D. Dutt, Alex Nicolau, and Puneet Gupta. 2012. VaMV: Variability-Aware Memory
Virtualization. In Design, Automation, and Test in Europe (DATE).

[13] Robert C. Baumann. 2005. Radiation-Induced Soft Errors in Advanced Semiconductor Technologies. IEEE Transactions
on Device and Materials Reliability 5, 3 (2005), 305–316.

[14] Timothy J. Dell. 1997. A White Paper on the Bene�ts of Chipkill-Correct ECC for PC Server Main Memory. Technical
Report. IBM Microelectronics Division.

[15] Nikil Dutt, Puneet Gupta, Alex Nicolau, Abbas BanaiyanMofrad, Mark Gottscho, and Majid Shoushtari. 2014. Multi-
Layer Memory Resiliency. In Proceedings of the ACM/IEEE Design Automation Conference (DAC).

[16] Hamed Farbeh, Mahdi Fazeli, Faramarz Khosravi, and Seyed Ghassem Miremadi. 2012. Memory Mapped SPM:
Protecting Instruction Scratchpad Memory in Embedded Systems against Soft Errors. In Proceedings of the European
Dependable Computing Conference (EDCC).

[17] Eiji Fujiwara and Masato Kitakami. 1993. A class of Error Locating Codes for Byte-Organized Memory Systems. In
Proceedings of the International Symposium on Fault-Tolerant Computing.

[18] Mark Gottscho, Abbas BanaiyanMofrad, Nikil Dutt, Alex Nicolau, and Puneet Gupta. 2015. DPCS: Dynamic
Power/Capacity Scaling for SRAM Caches in the Nanoscale Era. ACM Transactions on Architecture and Code Optimiza-
tion (TACO) 12, 3 (2015), 26.

[19] Mark Gottscho, Luis A. D. Bathen, Nikil Dutt, Alex Nicolau, and Puneet Gupta. 2015. ViPZonE: Hardware Power
Variability-Aware Memory Management for Energy Savings. IEEE Transactions on Computers (TC) 64, 5 (2015),
1483–1496.

[20] Mark Gottscho, Clayton Schoeny, Lara Dolecek, and Puneet Gupta. 2016. Software-De�ned Error-Correcting Codes.
In Proceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W).

[21] Puneet Gupta, Yuvraj Agarwal, Lara Dolecek, Nikil Dutt, Rajesh K. Gupta, Rakesh Kumar, Subhasish Mitra, Alexandru
Nicolau, Tajana Simunic Rosing, Mani B. Srivastava, Steven Swanson, and Dennis Sylvester. 2013. Underdesigned
and Opportunistic Computing in Presence of Hardware Variability. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD) 32, 1 (2013), 8–23.

[22] Matthew R. Guthaus, Je�rey S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor Mudge, and Richard B. Brown. 2001.
MiBench: A Free, Commercially Representative Embedded Benchmark Suite. In Proceedings of the IEEE International
Workshop on Workload Characterization (IWWC).

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

23

[23] Said Hamdioui, Georgi Gaydadjiev, and Ad J. van de Goor. 2004. The State-of-art and Future Trends in Testing
Embedded Memories. In International Workshop on Memory Technology, Design and Testing (MTDT).

[24] Said Hamdioui, Ad J. van de Goor, and Mike Rodgers. 2002. March SS: A Test for All Static Simple RAM Faults. In
International Workshop on Memory Technology, Design, and Testing (MTDT).

[25] Nam Sung Kim, Krisztian Flautner, David Blaauw, and Trevor Mudge. 2004. Circuit and Microarchitectural Techniques
for Reducing Cache Leakage Power. IEEE Transactions on Very Large Scale Integration Systems (TVLSI) 12, 2 (2004),
167–184.

[26] Liangzhen Lai. 2015. Cross-Layer Approaches for Monitoring, Margining and Mitigation of Circuit Variability. Ph.D.
Dissertation. University of California, Los Angeles (UCLA).

[27] Serge Lamikhov-Center. 2016. ELFIO: C++ Library for Reading and Generating ELF Files. (2016). http://el�o.sourceforge.
net/

[28] F. Li, G. Chen, M. Kandemir, and I. Kolcu. 2005. Improving Scratch-Pad Memory Reliability Through Compiler-Guided
Data Block Duplication. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[29] Man-Lap Li, Pradeep Ramachandran, Swarup K. Sahoo, Sarita V. Adve, Vikram S. Adve, and Yuanyuan Zhou. 2008.
Understanding the Propagation of Hard Errors to Software and Implications for Resilient System Design. In Proceedings
of the ACM International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS).

[30] Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul Shen. 1996. Value Locality and Load Value Prediction. In
Proceedings of the ACM International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS).

[31] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G Zorn. 2011. Flikker: Saving DRAM Refresh-
Power Through Critical Data Partitioning. In Proceedings of the ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS).

[32] Shih-Lien Lu, Qiong Cai, and Patrick Stolt. 2013. Memory Resiliency. Intel Technology Journal 17, 1 (2013).
[33] Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman Kansal, Jie Liu, Badriddine Khessib,

Kushagra Vaid, and Onur Mutlu. 2014. Characterizing Application Memory Error Vulnerability to Optimize Datacenter
Cost via Heterogeneous-Reliability Memory. In Proceedings of the IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN).

[34] Tayyeb Mahmood, Seokin Hong, and Soontae Kim. 2015. Ensuring Cache Reliability and Energy Scaling at Near-
Threshold Voltage with Macho. IEEE Transactions on Computers (TC) 64, 6 (2015), 1694–1706.

[35] Mehrtash Manoochehri, Murali Annavaram, and Michel Dubois. 2011. CPPC: Correctable Parity Protected Cache. In
Proceedings of the ACM/IEEE International Symposium on Computer Architecture (ISCA).

[36] Michail Mavropoulos, Georgios Keramidas, and Dimitris Nikolos. 2015. A Defect-Aware Recon�gurable Cache
Architecture for Low-Vccmin DVFS-Enabled Systems. In Design, Automation, and Test in Europe (DATE).

[37] Sparsh Mittal. 2014. A Survey of Architectural Techniques for Improving Cache Power E�ciency. Sustainable
Computing: Informatics and Systems 4, 1 (2014), 33–43.

[38] Sparsh Mittal. 2016. A Survey of Architectural Techniques for Managing Process Variation. Comput. Surveys 48, 4
(2016).

[39] Amir Mahdi Hosseini Monazzah, Hamed Farbeh, Seyed Ghassem Miremadi, Mahdi Fazeli, and Hossein Asadi. 2013.
FTSPM: A Fault-Tolerant ScratchPad Memory. In Proceedings of the IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN).

[40] M Mutyam and V Narayanan. 2007. Working with Process Variation Aware Caches. In Design, Automation, and Test in
Europe (DATE).

[41] Preeti Ranjan Panda, Nikil Dutt, and Alexandru Nicolau. 1999. Memory Issues in Embedded Systems-on-Chip: Optimiza-
tions and Exploration.

[42] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, and Todd C. Mowry. 2012.
Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches. In Proceedings of the ACM
International Conference on Parallel Architectures and Compilation Techniques (PACT).

[43] Michael Powell, Se-Hyun Yang, Babak Falsa�, Kaushik Roy, and T. N. Vijaykumar. 2000. Gated-Vdd: A Circuit Technique
to Reduce Leakage in Deep-Submicron Cache Memories. In Proceedings of the IEEE International Symposium on Low
Power Electronics and Design (ISLPED).

[44] Moinuddin K. Qureshi and Zeshan Chishti. 2013. Operating SECDED-Based Caches at Ultra-Low Voltage with FLAIR.
In Proceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

[45] Ashish Ranjan, Swagath Venkataramani, Xuanyao Fong, Kaushik Roy, and Anand Raghunathan. 2015. Approximate
Storage for Energy E�cient Spintronic Memories. In Proceedings of the ACM/IEEE Design Automation Conference
(DAC).

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

24

http://elfio.sourceforge.net/
http://elfio.sourceforge.net/

[46] Mohamed M. Sabry, David Atienza, and Francky Catthoor. 2014. OCEAN: An Optimized HW/SW Reliability Mitigation
Approach for Scratchpad Memories in Real-Time SoCs. ACM Transactions on Embedded Computing Systems (TECS) 13,
4s (2014).

[47] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Grossman. 2011. EnerJ:
Approximate Data Types for Safe and General Low-Power Computation. In Proceedings of the ACM Conference on
Programming Language Design and Implementation (PLDI).

[48] Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. 2013. Approximate Storage in Solid-State Memories. In
Proceedings of the IEEE/ACM International Symposium on Microarchitecture (MICRO).

[49] Hossein Sayadi, Hamed Farbeh, Amir Mahdi Hosseini Monazzah, and Seyed Ghassem Miremadi. 2014. A Data
Recomputation Approach for Reliability Improvement of Scratchpad Memory in Embedded Systems. In Proceedings of
the IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT).

[50] Mark F. Schilling. 2012. The Surprising Predictability of Long Runs. Mathematics Magazine 85, 2 (2012), 141–149.
[51] Stanley E. Schuster. 1978. Multiple Word/Bit Line Redundancy for Semiconductor Memories. IEEE Journal of Solid-State

Circuits (JSSC) 13, 5 (1978), 698–703.
[52] Philip P. Shirvani and Edward J. McCluskey. 1999. PADded Cache: A New Fault-Tolerance Technique for Cache

Memories. In Proceedings of the VLSI Test Symposium.
[53] Majid Shoushtari, Abbas BanaiyanMofrad, and Nikil Dutt. 2015. Exploiting Partially-Forgetful Memories for Approxi-

mate Computing. IEEE Embedded Systems Letters (ESL) 7, 1 (2015), 19–22.
[54] Jiguo Song, Gedare Bloom, and Gabriel Palmer. 2016. SuperGlue: IDL-Based, System-Level Fault Tolerance for

Embedded Systems. In Proceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN).

[55] Rick van Rein. 2016. BadRAM: Linux Kernel Support for Broken RAM Modules. (2016).
[56] Daniel P. Volpato, Alexandre K.I. Mendonca, Luiz C.V. dos Santos, and José Luís Güntzel. 2010. A Post-Compiling

Approach that Exploits Code Granularity in Scratchpads to Improve Energy E�ciency. In Proceedings of the IEEE
Computer Society Annual Symposium on VLSI (ISVLSI). 127–132.

[57] Jiajing Wang and Benton H. Calhoun. 2011. Minimum Supply Voltage and Yield Estimation for Large SRAMs Under
Parametric Variations. IEEE Transactions on Very Large Scale Integration Systems (TVLSI) 19, 11 (2011), 2120–2125.

[58] Lucas Wanner, Charwak Apte, Rahul Balani, Puneet Gupta, and Mani Srivastava. 2013. Hardware Variability-Aware
Duty Cycling for Embedded Sensors. IEEE Transactions on Very Large Scale Integration Systems (TVLSI) 21, 6 (2013),
1000–1012.

[59] Lucas Wanner, Liangzhen Lai, Abbas Rahimi, Mark Gottscho, Pietro Mercati, Chu-Hsiang Huang, Frederic Sala, Yuvraj
Agarwal, Lara Dolecek, Nikil Dutt, Puneet Gupta, Rajesh Gupta, Ranjit Jhala, Rakesh Kumar, Sorin Lerner, Subhasish
Mitra, Alexandru Nicolau, Tajana Simunic Rosing, Mani B. Srivastava, Steve Swanson, Dennis Sylvester, and Yuanyuan
Zhou. 2015. NSF Expedition on Variability-Aware Software: Recent Results and Contributions. De Gruyter Information
Technology (it) 57, 3 (2015).

[60] Andrew Waterman, Yunsup Lee, David Patterson, and Krste Asanovic. 2014. The RISC-V Instruction Set Manual
Volume I: User-Level ISA Version 2.0. (2014).

[61] Chris Wilkerson, Hongliang Gao, Alaa R. Alameldeen, Zeshan Chishti, Muhammad Khellah, and Shih-Lien Lu.
2008. Trading o� Cache Capacity for Reliability to Enable Low Voltage Operation. In Proceedings of the ACM/IEEE
International Symposium on Computer Architecture (ISCA).

[62] Jack K. Wolf. 1965. On an Extended Class of Error-Locating Codes. Information and Control 8, 2 (1965), 163–169.
[63] J. K. Wolf and B. Elspas. 1963. Error-Locating Codes – A New Concept in Error Control. IEEE Transactions on

Information Theory 9, 2 (1963), 113–117.
[64] Jun Xu, Zbigniew Kalbarczyk, Sanjay Patel, and Ravishankar K Iyer. 2002. Architecture Support for Defending Against

Bu�er Over�ow Attacks. In Workshop on Evaluating and Architecting Systems for Dependability.
[65] Chao Yan and Russ Joseph. 2016. Enabling Deep Voltage Scaling in Delay Sensitive L1 Caches. In Proceedings of the

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
[66] Jun Yang, Youtao Zhang, and Rajiv Gupta. 2000. Frequent Value Compression in Data Caches. In Proceedings of the

ACM/IEEE International Symposium on Microarchitecture (MICRO). 258–265.
[67] Amir Yazdanbakhsh, Divya Mahajan, Hadi Esmaeilzadeh, and Pejman Lot�-Kamran. 2017. AxBench: A Multiplatform

Benchmark Suite for Approximate Computing. IEEE Design and Test 34, 2 (2017), 60–68.

Received April 7, 2017; revised June 9, 2017; accepted June 30, 2017

M. Gottscho et al. Low-Cost Memory Fault Tolerance for IoT Devices CASES/TECS 2017

25

	Abstract
	1 Introduction
	2 Background
	2.1 Scratchpad Memories (SPMs)
	2.2 Program Sections and Memory Segments
	2.3 Tolerating SRAM Faults
	2.4 Error-Correcting Codes (ECCs)
	2.5 Error-Localizing Codes

	3 Approach
	3.1 FaultLink: Avoiding Hard Faults at Link-Time
	3.2 Software-Defined Error-Localizing Codes (SDELC): Recovering Soft Faults at Run-Time

	4 FaultLink
	4.1 Test Chip Experiments
	4.2 Toolchain
	4.3 Fault-Aware Section-Packing

	5 SDELC
	5.1 Architecture
	5.2 Ultra-Lightweight Error-Localizing Codes (UL-ELC)
	5.3 Recovering SEUs in Instruction Memory
	5.4 Recovering SEUs in Data Memory

	6 Evaluation
	6.1 Hard Fault Avoidance using FaultLink
	6.2 Soft Fault Recovery using SDELC

	7 Related Work
	7.1 Fault-Tolerant Caches
	7.2 Fault-Tolerant Scratchpads

	8 Discussion
	8.1 Performance Overheads
	8.2 Memory Reliability Binning
	8.3 Coping with Aging and Wearout using FaultLink
	8.4 Risk of SDCs from SDELC
	8.5 Directions for Future Work

	9 Conclusion
	Acknowledgments
	References

