
UCLA
Technical Reports

Title
Software-Defined ECC: Heuristic Recovery from Uncorrectable Memory Errors

Permalink
https://escholarship.org/uc/item/0gt7j9qj

Authors
Gottscho, Mark
Schoeny, Clayton
Dolecek, Lara
et al.

Publication Date
2017-10-24

Data Availability
The data associated with this publication are available upon request.

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0gt7j9qj
https://escholarship.org/uc/item/0gt7j9qj#author
https://escholarship.org
http://www.cdlib.org/

Software-Defined ECC:
Heuristic Recovery from Uncorrectable Memory Errors

Mark Gottscho, Clayton Schoeny, Lara Dolecek, and Puneet Gupta

Electrical and Computer Engineering Department
University of California, Los Angeles

{mgottscho, cschoeny}@ucla.edu, {dolecek, puneet}@ee.ucla.edu

ABSTRACT
We propose the novel idea of Software-Defined Error-
Correcting Codes (SDECC) that opportunistically recover
from detected-but-uncorrectable errors (DUEs) in memory.
It is based on two key ideas: (i) for a given DUE, we compute
a small list of candidate codewords, one of which is guaranteed
to be correct; and (ii) side information about data in memory
guides an entropy-based recovery policy that chooses the best
candidate. A lightweight cacheline-level hash can optionally
be added on top of the ECC construction to prune the list of
candidates when a DUE occurs.

We demonstrate the feasibility of SDECC for linear (t)-
symbol-correcting, (t + 1)-symbol-detecting codes and ana-
lyze existing SECDED, DECTED, and SSCDSD ChipKill-
Correct constructions. SDECC requires minimal architectural
support in the memory controller and adds no performance,
energy, or parity storage overheads during normal memory
access when DUEs do not occur.

Evaluation is done using both randomized DUE error injec-
tion on data from memory traces of SPEC CPU2006 bench-
marks and online during runs of the AxBench suite. We find
that up to 99.9999% of double-chip DUEs in the ChipKill
code with a hash can be successfully recovered. Recover-
ing double-bit DUEs for a conventional SECDED code with
approximation-tolerant applications produces unacceptable
output quality in just 0.1% of cases.

1. INTRODUCTION
Hardware reliability is now a central issue in computing. Mem-
ory systems are a limiting factor in system reliability [58]
because they are primarily designed to maximize bit storage
density; this makes them particularly sensitive to manufactur-
ing process variation, environmental operating conditions, and
aging-induced wearout [43, 54]. DRAM errors are common
in warehouse-scale computers: Google has observed 70000
FIT/Mb in commodity memory, with 8% of modules affected
per year [58], while Facebook has found that 2.5% of their
servers have experienced memory errors per month [39]. Ad-
vances in memory resiliency can also help improve system
energy efficiency [7].

Error-correcting codes (ECCs) are a classic way to build
resilient memories by adding redundant parity bits or symbols.
A code maps each information message to a unique codeword
that allows a limited number of errors to be detected and/or
corrected. Errors in the context of ECC can be broadly cate-
gorized as corrected errors (CEs), detected-but-uncorrectable
errors (DUEs), mis-corrected errors (MCEs), and undetected
errors (UDEs). CEs are harmless but are typically reported to
system software anyway [19] as they may indicate the possibil-
ity of future DUEs. UDEs may result in silent data corruption
(SDC) of software state, while MCEs may cause non-silent
data corruption (NSDC); neither are desirable.

When a DUE occurs, the entire system usually panics, or
in the case of a supercomputer, rolls back to a checkpoint to
avoid data corruption. Both outcomes harm system availability
and can cause some state to be lost. In this paper, we con-
sider the problem of memory DUEs, because they are more
common than MCEs and UDEs and remain a key challenge to
the reliability and availability of extreme-scale systems. For
instance, even with state-of-the-art strong memory protection
using a ChipKill-Correct ECC, the Blue Waters supercom-
puter suffers from a memory DUE rate of 15.98 FIT/GB [38].
This rate is high enough that whole-system checkpoints would
likely be required every few hours, and would add a significant
performance and energy overhead to HPC applications [64].
For industry-standard SECDED codes that perform better and
use less energy than ChipKill, DUEs are at least an order
of magnitude more frequent [38] and compound the reliabil-
ity/availability problem further.

The theoretical development of ECCs have – thus far – im-
plicitly assumed that every message/information bit pattern is
equally likely to occur. In general-purpose memory systems,
however, this assumption does not hold true. For instance,
applications exhibit unique characteristics in control flow and
data that arise naturally from the algorithm, inputs, OS, ISA,
and micro-architecture. For the first time, we demonstrate
how to exploit some of these characteristics to enhance the
capabilities of existing ECCs in order to recover from a large
fraction of otherwise-harmful DUEs.

We propose the concept of Software-Defined ECC (SDECC),

1

a general class of techniques spanning hardware, software, and
coding theory that improves the overall resilience of systems
by enabling heuristic best-effort recovery from memory DUEs.
The key idea is to add software support to the hardware ECC
code so that most memory DUEs can be recovered. SDECC
is best suited for approximation-tolerant applications because
of its best-effort recovery approach.

Our approach is summarized as follows. When a memory
DUE occurs, hardware stores information about the error in
a small set of configuration-space registers that we call the
Penalty Box and raises an error-reporting interrupt to system
software. System software then reads the Penalty Box, derives
additional context about the error – and using basic coding
theory and knowledge of the ECC implementation – quickly
computes a list of all possible candidate messages, one of
which is guaranteed to match the original information that was
corrupted by the DUE. If available, an optional lightweight
hash is proposed to prune the list of candidates. A software-
defined data recovery policy heuristically recovers the DUE
in a best-effort manner by choosing the most likely remaining
candidate based on available side information (SI) from the
corresponding un-corrupted cacheline contents; if confidence
is low, the policy instead forces a panic to minimize the risk
of accidentally-induced MCEs resulting in intolerable NSDC.
Finally, system software writes back the recovery target mes-
sage to the Penalty Box, which allows hardware to complete
the afflicted memory read operation.

SDECC does not degrade memory performance or energy in
the common cases when either no errors or purely hardware-
correctable errors occur. Yet it can significantly improve re-
silience in the critical case when DUEs actually do occur. Our
contributions are described in the following sections.
• Sec 3: We derive the theoretical basis for software to com-

pute a short list of candidate messages/codewords – one
of which is guaranteed to be correct – for any (t)-symbol-
correcting, (t +1)-symbol-detecting code upon receipt of a
(t +1)-symbol memory DUE.
• Sec 4: We analyze new properties of commonly-used ECCs

that demonstrate the feasibility of SDECC for real systems.
We also propose optional support for a second-tier hash
that can improve SDECC by pruning the list of candidate
codewords before recovery.

• Sec 5: We describe architectural support for SDECC
with main memory. In general, SDECC requires minimal
changes to existing DRAM controllers and no changes to the
ECC design. There is also no performance or energy penalty
in the common case, i.e., in the vast majority of memory
accesses when DUEs do not occur. Our optional hash costs
a small amount of extra parity bit storage. SDECC incurs
no storage overheads when used with purely-conventional
ECC constructions.

• Sec 6: We propose and evaluate a cacheline entropy-based
recovery policy that utilizes SI about patterns of application
data in memory to guide successful recovery from DUEs;
when SI is weak, it instead aborts recovery by panicking.
• Sec 7: We evaluate the efficacy of SDECC with a compre-

hensive DUE injection campaign that uses representative
SPEC CPU2006 traces. We compare our policy with alter-
natives and consider the impact of SI quality on recovery

Table 1: Important Background Notation
Term Description
C linear block error-correcting code
G generator matrix
H parity-check matrix
n codeword length in symbols
k message length in symbols
r parity length in symbols
b bits per symbol
q symbol alphabet size
t max. guaranteed correctable symbols in codeword
∆q(~u,~v) q-ary Hamming distance between~u and~v
dmin minimum symbol distance of code
wtq(·) q-ary Hamming weight
~m original/intended message
~c original/intended codeword
~e error that corrupts original codeword
~x received string with error (corrupted codeword)
~s parity-check syndrome
[n,k,dmin]q shorthand for crucial ECC parameters
(t)SC(t +1)SD (t)-symbol-correcting, (t +1)-symbol-detecting

rates.
• Sec 8: We evaluate the impact of SDECC on approxi-

mate applications by using online DUE injections on the
AxBench suite, and by tracking the effect of resulting MCEs
on output quality (benign, tolerable NSDC, and intolerable
NSDC).

We begin by covering the necessary basics of ECC in order
to understand our theoretical contributions that immediately
follow.

2. ECC BACKGROUND
We introduce fundamental ECC concepts that are necessary
to understand the theory and analysis of SDECC. Table 1
summarizes the terms introduced in this section. Throughout
this paper, we will refer to the most important code parameters
using the shorthand notation [n,k,dmin]q (not to be confused
with citations).
2.1 Key Concepts
A linear block error-correcting code C is a linear subspace of
all possible row vectors of length n. The elements of C are
called codewords, which are each made up of symbols. We
refer to symbols as q-ary, which means they can take on q
values where q is a power of 2. A symbol equivalently consists
of b = log2q bits. For example, if q = 2, each symbol is a bit,
yielding a binary code; if q = 4, we have a quaternary code
where each symbol consists of two bits. Therefore, for binary
codes, whenever we use the term “symbol,” it is equivalent to
“bit.”

The code can also be thought of as an injective mapping
of a given q-ary row vector message ~m of length k symbols
into a codeword ~c of length n symbols. Because the code
is linear, any two codewords ~c,~c′ ∈ C sum to a codeword
~c′′ ∈ C . Thus, there are r = n− k redundant symbols in each
codeword. A linear block code can be fully described by
either its q-ary (k× n) generator matrix G, or equivalently,
by its q-ary (r× n) parity-check matrix H. Each row of H
is a parity-check equation that all codewords must satisfy:
~cT ∈ Null(H) where T is the transpose. There are usually
many ways of constructing a particular G and H pair for a
code with prescribed k and n parameters.

To protect stored message data, one first encodes the mes-
sage by multiplying it with the generator matrix: ~mG =~c. One
then writes the resulting codeword ~c to memory. When the

2

system reads the memory address of interest, the ECC decoder
hardware obtains the received string ~x = ~c+~e. Here, ~e is
a q-ary error-vector of length n that represents where mem-
ory faults, if any, have resulted in changed symbols in the
codeword. The decoder calculates the syndrome: ~s = H~xT.
There are no declared CEs or DUEs if and only if ~s =~0, or
equivalently,~x is actually some codeword ~c′ ∈ C . Note that
even if ~x = ~c′ ∈ C , there is no guarantee that errors did not
actually happen. For instance, if the error is itself a codeword
(~e ∈ C), then there is a UDE due to the linearity of the code:
~c+~e =~c′ ∈ C .

2.2 Minimum Distance and Error Correction
Guarantees

The minimum distance dmin of a linear code is defined as
dmin = min

~u,~v∈C ;
~u6=~v

[∆q(~u,~v)] = min
~c∈C ;
~c6=~0

[wtq(~c)]

where ∆q(~u,~v) is the q-ary Hamming distance between vectors
~u and~v, and wtq(~u) is the q-ary Hamming weight of a vector
~u. Notice that the minimum distance is equal to the minimum
Hamming weight of all non-~0 codewords (because~0 is always
a codeword in a linear code).

The maximum number of symbol-wise errors in a codeword
that the code is guaranteed to correct is given by t = b 1

2 (dmin−
1)c. Thus, we often refer to codes with even-valued dmin as
(t)-symbol-correcting, (t +1)-symbol-detecting, or (t)SC(t +
1)SD.

2.3 ECC Decoder Assumptions
The typical decoding method for ECC hardware is to choose
the maximum-likelihood codeword [36] under two implicitly
statistical assumptions.
• Assumption 1: all symbols in a codeword are equally likely

to be afflicted by faults (the symmetric channel model).
• Assumption 2: all messages are equally likely to occur.
Under these assumptions, the maximum-likelihood decode
target is simply the minimum-distance codeword from the
received string. Under maximum-likelihood decoding, any
error ~e with wtq(~e) > t is guaranteed to cause either a DUE,
MCE, or a UDE.

3. SDECC THEORY
Important terms and notation introduced in this section are
summarized in Table 2.

SDECC is based on the fundamental observation that when
a (t +1)-symbol DUE occurs in a (t)SC(t +1)SD code, there
remains significant information in the received string~x. This
information can be used to recover the original message ~m
with reasonable certainty. It is not the case that the original
message was completely lost, i.e., one need not naïvely choose
from all qk possible messages. In fact, there are exactly

N =

(
n

t +1

)
(q−1)(t+1) (1)

ways that the DUE could have corrupted the original code-
word, which is less than qk. But guessing correctly out of
N possibilities is still difficult. In practice, there are just a
handful of possibilities: we call them candidate codewords (or
candidate messages).

Table 2: Important SDECC-Specific Notation
Term Description
N Number of ways to have a DUE
Wq(dmin) no. min. weight codewords
Ψ(~x) or |Ψ(~x)| list (or no.) of candidate codewords for received string~x
µ mean no. of candidate codewords ∀ possible DUEs
PG prob. of choosing correct codeword for a given DUE
PG avg. prob. of choosing correct codeword ∀ possible DUEs
h Second-tier hash size in bits
linesz Total cacheline size in symbols (message content)

Figure 1: Illustration of candidate codewords for 2-bit DUEs in the imag-
inary 2D-represented Hamming space of a binary SECDED code. The
actual Hamming space has n dimensions.

If the hardware ECC decoder registers a DUE, there can be
several equidistant candidate codewords at the q-ary Hamming
distance of exactly (t + 1) from the received string ~x. We
denote the set of candidates by Ψ(~x)⊆ C .

Without any side information (SI) about message probabili-
ties, under conventional principles, each candidate codeword
is assumed to be equally likely. In other words, there is a
candidate codeword more likely than the others if and only if
it is uniquely closest to~x; in such a case, a CE could have been
registered instead of a DUE (depending on the implementation
of the ECC decoder).

We retain Assumption 1 from Sec. 2.3, which means we
assume all DUEs are equally likely to occur. However, in the
specific case of DUEs, we drop Assumption 2: this allows us
to leverage SI about memory contents to help choose the right
candidate codeword in the event of a given DUE.

The size of the candidate codeword list |Ψ(~x)| is independent
of the original codeword; it depends only on the error vector~e
due to linearity of the code C . That is,

|Ψ(~x)|= |Ψ(~c+~e)|= |Ψ(~e)|. (2)
Note that the actual set of candidate codewords Ψ(~x) still
depends on both the error-vector~e and the original codeword
~c (because~x =~c+~e).

One can better understand candidate codewords by visual-
izing the Hamming space of a code. Consider Fig. 1, which
depicts the relationships between codewords, CEs, DUEs, and
candidate codewords for individual DUEs for a SECDED
code.

We derive bounds on the number of candidate codewords,
show how to compute a list of candidates for a given DUE,
and explain how to prune a list of candidates using a small
cacheline-level second-tier checksum.

3.1 Number of Candidate Codewords
The number of candidate codewords |Ψ(~e)| for any given

3

(t + 1) DUE ~e has a linear upper bound that makes DUE
recovery tractable to implement in practice.

LEMMA 1. For any error ~e with wtq(~e) = (t + 1) in a
(t)SC(t +1)SD linear q-ary code C of length n,

|Ψ(~e)| ≤
⌊

n(q−1)
t +1

⌋
.

PROOF. The received string ~x is exactly q-ary distance 1
from the t-boundary of the nearest Hamming sphere(s). Thus,
there are at most n(q−1) single-element perturbations ~p such
that~y =~x+~p is a CE inside a Hamming sphere of a codeword.
For each perturbation that results in a CE, there must be ex-
actly t more single-element perturbations to fully arrive at a
candidate codeword~c′. Because we cannot perturb the same el-
ements more than once to arrive at a given~c′, there cannot ever
be more than b(n(q−1))/(t +1)c candidate codewords.

The probability of correctly guessing the original codeword
– without the use of any side information – for a specific error
~e is simply the reciprocal of the number of candidate code-
words: PG(~e) = 1/|Ψ(~e)|. Let PG be the average probability of
guessing the correct codeword over all possible (t+1)-symbol
DUEs. Also let ∑~e represent the summation over all possible
(t +1) symbol-wise error vectors~e. Then

PG =
1
N ∑

~e

1
|Ψ(~e)|

. (3)

3.2 Average Number of Candidates
For a particular construction of a given code, we define Wq(w)
as the total number of codewords that have q-ary Hamming
weight w. Then Wq(dmin) refers to the total number of mini-
mum weight non-~0 codewords; its value depends on the exact
constructions of G and H for given [n,k,dmin]q parameters.
The average number of candidate codewords over all possible
(t +1)-symbol DUEs is denoted as µ .

LEMMA 2. For a linear q-ary (t)SC(t + 1)SD code C of
length n and with given Wq(dmin = 2t+2), the average number
of candidate codewords µ over all possible (t + 1)-symbol
DUEs is

µ(n, t,q) =

(2t+2
t+1

)
Wq(2t +2)(n

t+1

)
(q−1)(t+1)

+1.

PROOF. In order to find the average number of candidate
codewords, we must sum the number of candidate code-
words for each unique (t + 1) q-ary error ~eE where E =
i1, i2, · · · , i(t+1), and i1 6= i2 6= · · · 6= i(t+1). We then divide
that sum by the number of error-vectors (n choose (t + 1)).
By linearity and without loss of generality, assume ~c =~0.
We know that the only codewords ~c′ ∈ C that can satisfy
∆(~c−~c′,~e) = (t +1) have weight Wq(dmin). Each such ~c′ that
has ~ci1 = ~ei1 , ~ci2 = ~ei2 , etc., then has (dmin choose (t + 1))
distinct error-vectors ~eE . Thus summing over all error-
vectors, each codeword ~c′ with wt(~c′) = dmin contributes to
(dmin choose (t +1)) candidate codewords. To average, we di-
vide [(dmin choose (t +1))]×Wq(dmin) by (n choose (t +1)).

Algorithm 1 Compute list of candidate codewords Ψ(~x) for a
(t + 1)-symbol DUE ~x in a linear (t)SC(t + 1)SD code with param-
eters [n,k,dmin]q. For error vectors, subscripts indicate the symbol
positions of errors, but not their q-ary values. For example,~e3 corre-
sponds to [00100 . . .0].

for i = 1 : n do
for j = 1 : q−1 do

~p← j ∗~ei //(symbol i in p gets q-ary value j, all others 0)
~y←~x+~p
if Decoder(~y) not DUE then

~c′← Decoder(~y) //Compute candidate codeword
if ~c′ /∈Ψ(~x) then //If candidate not already in list

Ψ(~x)←Ψ(~x)∪~c′ //Add candidate to list
end if

end if
end for

end for

We also divide by (q−1)(t+1) because each non-zero element
of the error vector~eE can take values from 1 to q−1. Finally,
we add 1 to the expression since the original codeword~c is a
candidate codeword for every possible error-vector, and was
not already counted in Wq(dmin).

We find that µ is often easier to compute than PG for long
symbol-based codes; this is useful because 1/µ is a lower
bound on PG.
3.3 Computing the List of Candidates
So far we have bounded the number of candidate codewords
for any (t +1)-symbol DUE; we now show how to find these
candidates. The candidate codewords Ψ(~x) for any (t + 1)-
symbol DUE received string~x is simply the set of equidistant
codewords that are exactly (t+1) symbols away from~x. More
formally, let subscripts be used to index symbols in a vector,
starting from the most significant position. Then

Ψ(~x) =~c∪{~c′ ∈ C :

∆q(~c′−~c) = dmin,~c′i =~xi ∀i where~ei 6= 0}. (4)
Notice that this equation depends on the error~e and original
codeword~c, but we only know the received string~x.

Fortunately, there is a simple and intuitive algorithm (shown
in Alg. 1) to find the list of candidate codewords Ψ(~x) with
runtime complexity O(nq/t). The essential idea is to try every
possible single symbol perturbation ~p on the received string.
Each perturbed string~y =~x+~p is run through a simple soft-
ware implementation of the ECC decoder, which only requires
knowledge of the parity-check matrix H (O(rnlogq) bits of
storage). Any~y characterized as a CE produces a candidate
codeword from the decoder output.
3.4 Pruning Candidates using a Lightweight Hash
In systems that require high reliability and availability, we
propose to optionally prune the list of candidate codewords
using a lightweight second-tier hash of several codewords
grouped together in a cacheline. This would increase the
success rate of SDECC while dramatically reducing the risk
of MCEs. Several previous works [23, 25, 26, 65] have also
proposed the use of RAID-like multi-tier codes, but using
traditional checksums instead than hashes.

We observe that second-tier hashes can also be used to prune
a list of candidate codewords for a DUE. For instance, we can
compute a h-bit original hash of the linesz×b total message

4

bits of a cacheline when it is written to memory. Then when
a DUE occurs, after the candidate messages are found using
Alg. 1, we can compute in software the candidate hashes for
each candidate cacheline and compare them with the original
that is read from memory. On average for a universal hash
function, the number of incorrect candidates |Ψ(~x)|−1 will
be reduced by a factor of 2h. In most cases, only one candidate
will match the original hash and we can fully correct the DUE;
there is a chance of hash collision, in which case the number
of candidates is still reduced but not down to one.

Errors in the original hash can cause candidate pruning to
fail. However, this is a concern only when there is simultane-
ously both a (t +1)-symbol DUE Ψ(~x) in one of the cacheline
codewords and an error in the hash. Although we consider this
situation to be very unlikely, there are two possible outcomes
for a universal hash.
• Outcome 1. The hash cannot prune the list of candidates

because no candidates’ computed hashes match. This case
is fairly benign: SDECC just falls back to the full list of
candidates. The probability of this lower bounded by

≥ (2h−|Ψ(~x)|)/(2h−1). (5)
• Outcome 2. The corrupted hash collides with the computed

hash of an incorrect candidate. Unfortunately, this case is
not benign: it causes an MCE because the original message
is mistakenly pruned along with other incorrect candidates.
However, for all but the smallest hashes, the probability is
much less than Outcome 1 and is upper bounded by

≤ (|Ψ(~x)|−1)/(2h−1). (6)
We assume there is no more than one DUE per cacheline.

Accordingly, we also assume the hash is not corrupted in order
to maintain a consistent fault model. Our future work will
explore SDECC in the context of detailed fault models where
these assumptions can be revisited.

4. SDECC ANALYSIS OF EXISTING ECCS
Code constructions exhibit structural properties that affect the
number of candidate codewords |Ψ(~e)|. Certain combinations
of error positions produce fewer candidate codewords than oth-
ers. This favors recovery of certain errors even if one simply
guesses from the corresponding list of candidate codewords.
In fact, distinct code constructions with the same [n,k,dmin]q
parameters can have different values of µ and distributions of
|Ψ(~e)|.

We apply the SDECC theory to seven code constructions
of interest in this paper: SECDED, DECTED, and SSCDSD
(ChipKill-Correct) constructions with typical message lengths
of 32, 64, and 128 bits. Table 3 lists properties that we have de-
rived for each of them. Most importantly, the final column lists
PG — the random baseline probability of successful recovery
without SI.

These probabilities are far higher than the naïve approaches
of guessing randomly from qk possible messages or from the
N possible ways to have a DUE. Thus, our approach can
handle DUEs in a more optimistic way than conventional ECC
approaches.
4.1 SECDED and DECTED
The class of SECDED codes (t = 1, q = 2, dmin = 4) is simple
and effective against random radiation-induced soft bit flips

1 5 10 15 20 25 30 35

35

30

25

20

15

10

5

2

In
d
e
x
 o

f
2
n
d
 b

it
 i
n
 e

rr
o
r

(j
)

Index of 1st bit in error (i)

8 candidates

7 candidates

19 candidates

GP (e) = 725,2625,26|Ψ(e)| = 1/

Colors hold no significance

except to reveal code structure.

Figure 2: Number of candidate codewords |Ψ(~ei, j)| for the Davydov
[39,32,4]2 SECDED code, where i and j represent the positions of the
two bit-errors that cause a DUE.

in memory. Hsiao’s [39,32,4]2 and [72,64,4]2 constructions
are the most common implementations of SECDED because
they minimize the number of decoder logic gates [21]. Davy-
dov proposed alternative and more structured SECDED codes
that instead minimize the probability of an MCE when there
is a triple-bit error (wtq(~e) = 3) by minimizing W2(4) [10].
We find that Davydov codes have an additional advantage
in context of SDECC: Lemma 2 tells us that these Davydov
SECDED constructions also minimize the average number
of candidate codewords µ . This can lend them an advantage
for heuristic recovery. Fig. 2 depicts how the structure of the
[39,32,4]2 Davydov construction determines the number of
candidate codewords for all N possible DUE patterns. For the
SECDED codes in this paper, the average number of candidate
codewords µ ranges from 9.67 to 20.73, as shown in Table 3.

DECTED codes (t = 2, q = 2, dmin = 6) can correct ran-
dom 2-bit errors and detect 3-bit errors. While they are not
typically used in commodity memory systems due to high
overheads, they attract continued interest by industry and re-
searchers. For this work, we simply add one extra parity bit
to the [127,113,5]2 and [63,51,5]2 BCH codes [9] and then
truncate them to obtain our own [45,32,6]2 and [79,64,6]2
DECTED constructions, respectively. For the DECTED codes
in this paper, a baseline random-candidate recovery policy has
around a 20-30% chance of success.

4.2 SSCDSD (ChipKill-Correct)
SSCDSD codes with 4-bit symbols (t = 1, q = 16, dmin =
4) are a non-binary equivalent of SECDED codes. We use
Kaneda’s Reed-Solomon-based [36,32,4]16 construction [27].
Messages are 128 bits long and codewords are 144 bits long,
so they are convenient to deploy in industry-standard DDRx-
based DRAM systems that are 72 bits wide. When two DRAM
channels are run in lockstep with x4 DRAM chips, [36,32,4]16
SSCDSD codes have the ChipKill-Correct property [12]. This
is because they can completely correct any errors resulting
from a single-chip failure, and detect any errors caused by a
double-chip failure. We find that despite there being 141750
possible ways to have a double-chip DUE, on average, there
are just 3.38 candidate codewords per DUE, with the random-
candidate chance of success being 39.88%. Thus, we expect

5

Table 3: Summary of Code Properties – PG is Most Important for SDECC
Class of Code Code Params. Type of Code Class of DUE # Min. Wt. Codew. # DUEs Avg. # Cand. LBnd. Prob. Rcov. Prob. Rcov.

[n,k,dmin]q (t +1) Wq(dmin) N µ 1/µ PG
32-bit SECDED [39,32,4]2 Hsiao [21] 2-bit 1363 741 12.04 8.31% 8.50%
32-bit SECDED [39,32,4]2 Davydov [10] 2-bit 1071 741 9.67 10.34% 11.70%
64-bit SECDED [72,64,4]2 Hsiao [21] 2-bit 8404 2556 20.73 4.82% 4.97%
64-bit SECDED [72,64,4]2 Davydov [10] 2-bit 6654 2556 16.62 6.02% 6.85%
32-bit DECTED [45,32,6]2 – 3-bit 2215 14190 4.12 24.27% 28.20%
64-bit DECTED [79,64,6]2 – 3-bit 17404 79079 5.40 18.52% 20.53%
128-bit SSCDSD [36,32,4]16 Kaneda [27] 2-sym. 56310 141750 3.38 29.67% 39.88%

ChipKill to deliver the best results in our evaluation.

5. SDECC ARCHITECTURE
SDECC consists of both hardware and software components
to enable recovery from DUEs in main memory DRAM. We
propose a simple hardware/software architecture whose block
diagram is depicted in Fig. 3 and will be referred throughout
this section. Although the software flow includes an instruc-
tion recovery policy, we do not present it in this work because
DUEs on instruction fetches are likely to affect clean pages
that can be remedied using a page fault (as shown in the fig-
ure). In addition to basic hardware/software support, we also
describe an implementation of the optional second-tier hash
support for pruning candidates prior to recovery.

5.1 Penalty Box Hardware
The key addition to hardware is the Penalty Box: a small buffer
in the memory controller that can store each codeword from
a cacheline (shown on the left-hand side of Fig. 3). When a
DUE occurs on a demand read (prefetch DUEs should have
the request dropped), the ECC decoder writes the raw contents
of the afflicted cacheline to the Penalty Box as-is (including
the parity bits). It also asserts a new SERVICE_REQ bit in the
error status register. The memory controller also blocks the for-
warding of the afflicted cacheline to the requesting hardware
resource. To avoid deadlock and performance degradation of
the system, the controller still allows other memory requests
to complete as usual in an out-of-order fashion. After the
Penalty Box and SERVICE_REQ bit are set, the memory con-
troller raises an asynchronous non-maskable-interrupt (NMI)
to the OS to report the error. Similar registers and interrupts
are supported in existing systems, e.g., Intel’s Machine-Check
Architecture [1].

Overheads. The area and power overhead of the essen-
tial SDECC hardware support is negligible. For example,
with a typical [72,64,4]2 SECDED or [36,32,4]16 SSCDSD
ChipKill-Correct ECC used in DRAM with 64-byte cache
lines and a DDRx burst length of eight, the Penalty Box re-
quires just 576 flip-flops arranged in a 72-wide and eight-deep
shift register. The area required per Penalty Box is approxi-
mately 736µm2 when synthesized with 15nm Nangate technol-
ogy — this is approximately one millionth of the total die area
for a 14nm Intel Broadwell-EP server processor [18]. This
shift register would add a negligible amount of leakage power.
Our SDECC design incurs no latency or bandwidth overheads
for the vast majority of memory accesses where no DUEs
occur. This is because the Penalty Box and error-reporting
interrupt are not on the critical path of memory accesses.

5.2 Software Stack

The OS responds to the interrupt (right-hand side of Fig. 3) and
reads the Penalty Box and the Error Status Register through
a device configuration interface (e.g., PCI). Software then
reverse-walks the page tables to determine which process(es)
own the physical page containing the DUE-afflicted cacheline.
It also checks the status and permissions of the mapped virtual
pages. If the page is backed on disk (clean), then a viable
recovery solution is to unmap the DUE-afflicted physical page
and re-allocate a new one filled with clean data from disk. If
not, then we rely on a SDECC recovery policy. In this paper,
we assume that DUE-afflicted pages are dirty.

The first task of the recovery policy is to compute the list
of candidate codewords for the DUE. If a hash is available, it
is used to prune the list of candidates. A heuristic recovery
policy (presented in Sec. 6) scores each remaining candidate
message using available SI. Successful recovery via choosing
the best candidate message is probabilistic. Using appropriate
statistical metrics, if the best-scoring candidate message is
not sufficiently likely to be correct, then the policy forces the
machine to panic or roll-back to a checkpoint. Recovery is
abandoned whenever there are multiple DUEs per cacheline
or if a second DUE arrives while the first is being handled; we
do not consider these scenarios explicitly.

Overheads. When a DUE occurs, the latency of the handler
and recovery policy is negligible compared to the expected
mean time between DUEs or typical checkpoint interval of
several hours. For instance, the total execution time of DUE
recovery in our un-optimized offline MATLAB implementa-
tion is 9.6 ms (using a human-friendly string-based software
ECC decoder for Alg. 1). A reasonable objective for an opti-
mized implementation in C is ≤ 1 ms. This would fall within
the measured range of 750 µs to 130 ms per error-reporting
interrupt as reported by others [19].

5.3 Lightweight Hash Implementation
We compute a small universal hash in two steps that is easy
to implement in hardware. First, we take the vertical parity
of the cacheline to generate a kb-bit intermediary value. We
then compact it to an h-bit hash using h randomly-generated
balanced parity trees where each with kb/2 inputs. Experi-
mentally, we find random inputs to distribute nearly uniformly
across 2h possible hash buckets (the ideal limit).

Our hash could be computed in one clock cycle and is only
on the critical path for memory writes; the single-cycle latency
can be hidden by pipelining. The critical path is three 2-input
XOR levels for vertical parity (up to 448 gates total) and up
to six logic levels for the random trees (up to 1008 gates
total). For 15nm Nangate, the total required XOR gate area
is up to 644 µm2. Our approach resembles the X-Compact
tree from VLSI test compaction [42] and micro-architectural

6

Linear to Physical Addr. Trans. ECC Encoder

Memory Interface

C
h

a
n

n
e

l
D

R
A

M
A

s
y
n
c
.
e
rr

o
r-

re
p
o
rt

in
g
 i
n
te

rr
u
p
t

M
e

m
o

ry

C
o

n
tr

o
ll

e
r

NoC

Request Queue

Data Buffer

(64-byte

cache lines)

Scheduler

Transaction

Queue

Command

Queue

Write

Queue

(72-bit

codewords)

Read Buffer

(72-bit

recv. strings)

Error Status

after Read-Retry?

DUE

no error/CE

Penalty Box

cache line

buffer

(raw 72-bit

recv. strings)

Error Status

Registers

Dev. Config. Interface

ERROR_TYPE

SERVICE_REQ

PHY_ADDR

ECC_ID

=0?

SDECC

support

CE or

DUE

Guaranteed

Success

Clean page

backed on disk?

Yes
Page Fault

No

Page type?

Inst.

Software-Defined Recovery Procedure for Memory DUEs

Read registers in DRAM

memory controller incl.

Penalty Box

Reverse page-table walk, find owning process(es)

and virtual page status (clean, dirty, permissions, etc.)

Data

Compute all candidate-correct

messages/codewords via ECC

knowledge

Compute message scores

using cacheline side-

information (SI)

Compute message scores

using lookup table of program

statistics side-information (SI)

Panic threshold

exceeded?

Choose best-scoring message as recovery target

No

- Force-panic app. to

avoid risk of non-silent

data corruption (NSDC)

- Roll back to

checkpoint

Probabilistic

Success
Yes

Only 1 legal

message?

No
Yes

S
o

ft
w

a
re

H
a
rd

w
a
re

Writeback recovered

cacheline to Penalty Box

DDR PHY

ECC Decoder

88888888

A
d

d
re

s
s
,

C
o

m
m

a
n

d
,

C
L

K

In-DRAM

Fault(s)

8

64-bit message
8-bit

parity

R
a

n
k
 S

e
le

c
ts

Channel

Fault(s)

72-bit codeword

Instruction Recovery PolicyData Recovery Policy

Fault

propagation

Abandon Recovery

Filter candidates using supple-

mental hash (if available) Only 1

candidate?

No

Yes

Figure 3: Block diagram of a general hardware and software implementation of SDECC. The figure depicts a typical DDRx-based main memory
subsystem with 64-byte cache lines, x8 DRAM chips, and a [72,64,4]2 SECDED ECC code. Hardware support necessary to enable SDECC is shaded
in gray (hash support not shown). The instruction recovery policy is outside the scope of this work.

Memory Transfer Block (586 bits)

Custom DRAM Channel (73-bit)

Message (64-bit) Parity (8-bit)

Hash I/O (1-bit)DRAM I/O (4-bit)

B
u
rs

t
L
e
n
g
th

 (
8
 b

e
a
ts

)

Cacheline

Payload

(512 bits)

Codeword (64-bit message + 8-bit parity)

Cacheline Hash (4 or 8 bits)

- Only decoded if DUE in a codeword

- Stored using extra x1 chip (no performance hit)

(a) [72,64,4]2 SECDED (modified DDRx channel)

Memory Transfer Block (288-symbol/1152-bit)

Lockstep DRAM Channel (36-symbol/144-bit)

Message (32-symbol/128-bit)

DRAM I/O (1-symbol/4-bit)

B
u
rs

t
L
e
n
g
th

 (
8
 b

e
a
ts

)

Cacheline

Payload

(512 bits)

Cacheline Hash (4, 8, or 16 bits)

- Substituted on 5th beat for wasted parity bandwidth (no performance hit)

- Only decoded if DUE in a codeword

- Stored using spare columns in each parity chip

Wasted

Bandwidth

Parity (4-symbol/16-bit)

Codeword (32-symbol message + 4-symbol parity)

(b) [36,32,4]16 SSCDSD (ChipKill-correct)
Figure 4: Proposed optional hardware support for short cacheline hashes with conventional SECDED and ChipKill-correct configurations.
Lightweight hashes are useful to increase reliability of SDECC by pruning candidate messages in the event of a codeword DUE.

fingerprinting for processor error detection [59]. Commonly-
used CRCs with the same number of check bits are a poor
substitute for our hash function: they usually do not approach
the universal hashing limit and are also infeasible to compute
in a single clock cycle.

The second-tier hash could be accommodated in current
DDRx memory systems with minor modifications. The hash
is written to memory alongside the cacheline; during reads, if a
DUE occurs, the original hash is stored in one additional h-bit
register in the Penalty Box. Fig. 4 depicts two possible con-
figurations for storing and accessing hash bits for [72,64,4]2
SECDED and [36,32,4]16 SSCDSD ChipKill-Correct mem-
ory organizations.

For SECDED (Fig. 4(a)), we propose that the standard 72-
bit DRAM channel be widened by one bit to accommodate
transfer of the hash bits in parallel with cacheline data as it is
written. This would require an extra pin per memory module.
Up to eight hash bits can be supported per cacheline; they
would be stored using either an extra 1-bit-wide low-capacity

DRAM device per rank, or by converting a single x4 DRAM
per rank to a x5 DRAM. This design would have no impact on
memory performance and a negligible impact on energy, but
requires non-standard DRAM parts. For an h = 8-bit hash per
cacheline, 1.56% additional storage is needed (128 MB per 16
GB rank).

For our ChipKill arrangement (Fig. 4(b)), we propose to
transfer the hash during DDRx beats that would otherwise be
wasted bandwidth (because the transfer size is larger than a
cacheline). The hash bits could be stored using a few spare
columns in each parity chip; up to 16 hash bits per cacheline
could be supported for ChipKill with no externally-visible
storage, performance, or energy overhead. If some spare
columns contain local hard or soft faults, they are unlikely to
have a system-level reliability impact because they are only
used if there is a DUE on that particular cacheline. Corrupted
hashes are not a major concern: on average, for the [36,32,4]16
SSCDSD ChipKill-Correct code with an h = 16-bit hash, the
probability of MCE caused by a corrupted hash (Eqn. 6) is

7

Mean Intra-Cacheline Entropy (bits/byte)

0 1 2 3 4 5 6

C
o
u
n
t

(a) 464.h264ref (integer)

Mean Intra-Cacheline Entropy (bits/byte)

0 1 2 3 4 5 6

C
o
u
n
t

(b) 444.namd (float)
Figure 5: Byte-granularity entropy distributions of 64-byte dynamic
cacheline read data.

just 0.003%.

6. DATA RECOVERY POLICY
In this work, we focus on recovery of DUEs in data (i.e.,
memory reads due to processor loads) because they are more
vulnerable than DUEs in instructions (i.e., memory reads due
to instruction fetches) as explained earlier.

There are potentially many sources of SI for recovering
DUEs. Based on the notion of data similarity, we propose
a simple but effective data recovery policy called Entropy-Z
that chooses the candidate that minimizes overall cacheline
Shannon entropy.
6.1 Observations on Data Similarity
Entropy is one of the most powerful metrics to measure data
similarity. We make two general observations about the preva-
lence of low data entropy in memory.
• Observation 1. There are only a few primitive data types

supported by hardware (e.g., integers, floating-point, and
addresses), which typically come in multiple widths (e.g.,
byte, halfword, word, or quadword) and are often laid out
in regular fashion (e.g., arrays and structs).

• Observation 2. In addition to spatial and temporal locality
in their memory access patterns, applications have inherent
value locality in their data, regardless of their hardware
representation. For example, an image-processing program
is likely to work on regions of pixels that exhibit similar
color and brightness, while a natural language processing
application will see certain characters and words more often
than others.

Similar observations have been made to compress memory [2,
30,44,50,51,73] and to predict [37] or approximate processor
load values [40, 41, 75].

We observe low byte-granularity intra-cacheline entropy
throughout the integer and floating-point benchmarks in the
SPEC CPU2006 suite. Let P(X) be the normalized relative
frequency distribution of a linesz×b-bit cacheline that has
been carved into equal-sized Z-bit symbols, where each sym-
bol χi can take 2Z possible values.1 Then we compute the
Z-bit-granularity entropy as follows:

entropy=−
linesz×b/Z

∑
i=1

P(χi)log2P(χi). (7)

Consider two representative examples for Z = 8 and
linesz×b = 512 bits in Fig. 5. The maximum possible intra-
cacheline entropy here is six bits/byte because there can be
only 26 = 64 distinct byte values in a cacheline; anything less
1Entropy symbols are not to be confused with the codeword symbols,
which can also be a different size.

Algorithm 2 Entropy-Z data recovery policy. Given a q-ary list of n-
symbol candidate codewords Ψ(~x), a q-ary list of n-symbol error-free
neighboring cacheline codewords Ln (the SI), and a PanicThreshold
value, produce a q-ary k-symbol recovery target message ~mtarget and
a flag SuggestToPanic.

M←Ψ(~x) with the r parity symbols stripped //Extract candidate messages
Lk ← Ln with the r parity symbols stripped //Extract cacheline SI
Declare candidate entropy list entropy with |M| elements
for i = 1 : |M| do

entropy[i]← Z-bit calculation for candidate cacheline //Eqn. 7
//(M[i] inserted into appropriate position in Lk)

end for
entropymin← min(entropy[i]∀i)
imin← argmin(entropy[i]∀i)
~mtarget←M[imin]

if tie for entropymin or mean(entropy[i]∀i) > PanicThreshold then
SuggestToPanic← True

else
SuggestToPanic← False

end if

can be exploited as SI by SDECC recovery. We find that al-
though floating-point values tend to have higher entropy within
a word compared to integer values, entropy between neighbor-
ing words is often comparable. The average intra-cacheline
byte-level entropy of the SPEC CPU2006 suite to be 2.98
bits/byte (roughly half of maximum).

6.2 Entropy-Z Policy
We leverage these observations using our proposed data recov-
ery policy, described in Alg. 2. Essentially, with this policy,
SDECC chooses the candidate message that minimizes overall
cacheline entropy. We mitigate the chance that our policy
chooses the wrong candidate message by deliberately forcing
a panic whenever there is a tie for minimum entropy or if the
mean cacheline entropy is above a specified threshold Pan-
icThreshold. The downside to this approach is that some
forced panics will be false positives, i.e., they would have
otherwise recovered correctly.

In the rest of the paper, unless otherwise specified, we use
Z = 8 bits, linesz×b = 512 bits and PanicThreshold =
4.5 bits (75% of maximum entropy), which we determine to
work well across a range of applications. Additionally, as we
show later, the Entropy-8 policy performs very well compared
to several alternatives.

7. RELIABILITY EVALUATION
We evaluate the impact of SDECC on system-level reliability
through a comprehensive error injection study on memory
access traces. Our objective is to estimate the fraction of
DUEs in memory that can be recovered correctly using the
SDECC architecture and policies while ensuring a minimal
risk of MCEs.

7.1 Methodology
The SPEC CPU2006 benchmarks are compiled against
GNU/Linux for the open-source 64-bit RISC-V (RV64G) in-
struction set v2.0 [69] using the official tools [48]. Each
benchmark is executed on top of the RISC-V proxy kernel [67]
using the Spike simulator [68] that we modified to produce
representative memory access traces. We only include the 20
benchmarks which successfully ran to completion. Each trace
consists of randomly-sampled 64-byte demand read cache-

8

0

0.2

0.4

0.6

0.8

1

Hsiao [72,64,4] 2

DECTED [79,64,6]2

SSCDSD [36,32,4] 16

M
e

a
n

 S
u

c
c
e

s
s
 R

a
te

Entropy-4

Entropy-8

Entropy-16

Hamming

DBX

Longest-Run

Delta

Baseline

Figure 6: Comparison of raw success rate (no forced panics) for different
SDECC data recovery policies averaged over all benchmarks. No hashes
are used.

lines, with an average interval between samples of one million
accesses.

Each trace is analyzed offline using a MATLAB model of
SDECC. For each benchmark and ECC code, we randomly
choose 1000 q-ary messages from the trace, encode them, and
inject min(1000,N) randomly-sampled (t +1)-symbol DUEs.
For each codeword/error pattern combination, we compute the
list of candidate codewords using Alg. 1 and apply the data
recovery policy using Alg. 2. A successful recovery occurs
when the policy selects a candidate message that matches
the original; otherwise, we either cause a forced panic or
recovery fails by accidentally inducing an MCE. Variability
in the reported results is negligible over many millions of
individual experiments.

Note that the absolute error magnitudes for DUEs and
SDECC’s impact on overall reliability should not be com-
pared directly between codes with distinct [n,k,dmin]q (e.g., a
double-bit error for SECDED is very different from a double-
chip DUE for ChipKill). Rather, we are concerned with the
relative fraction of DUEs that can be saved using SDECC
for a given ECC code. For evaluations that include second-
tier hashes we assume there is no error in the hash itself, as
explained earlier.

7.2 Comparison of Data Recovery Policies
We first compare the raw successful recovery rates of six
different policies for three ECCs without including any forced
panics nor any second-tier hash. Thus any un-successful
recovery here is an MCE. The raw success rate averaged over
the SPEC CPU2006 suite for each policy is shown for three
ECC constructions in Fig. 6. The depicted baseline represents
the average probability PG that we randomly select the original
codeword out of a list of candidates for all possible DUEs.

The alternative policies under consideration are the follow-
ing. Hamming chooses the candidate that minimizes the av-
erage binary Hamming distance to the neighboring words in
the cacheline. DBX chooses the candidate that maximizes
0/1-run lengths in the output of the DBX transform [30] of
the cacheline. Longest-Run, is inspired by frequent pattern
compression (FPC) [2] and chooses the candidate message
with the longest run of 0/1 in the cacheline. Delta is inspired
by frequent value compression (FVC) [73] and chooses the
candidate message that minimizes the sum of squared integer
deltas to the other words in the cacheline.

Our Entropy-Z policy variants recovered the most DUEs
overall. Of these three, Entropy-8 (Z = 8) performed better
than Z = 4 and Z = 16. The 8-bit entropy symbol size per-
forms best because its alphabet size (28 = 256 values) matches

Table 4: Percent Breakdown of SDECC Entropy-8 Policy without Hashes
(S = success, P = forced panic, M = MCE)

panics taken panics not taken random baseline
S P M S P M S P M

conv. baseline - 100 -
[39,32,4]2 Hsiao 69.1 25.6 5.3 72.7 - 27.3 8.5 - 91.5
[39,32,4]2 Davydov 70.3 25.2 4.5 76.0 - 24.0 11.7 - 88.3
[72,64,4]2 Hsiao 71.6 23.7 4.7 75.3 - 24.7 5.0 - 95.0
[72,64,4]2 Davydov 74.0 21.9 4.1 77.7 - 22.3 6.9 - 93.2
[45,32,6]2 DECTED 77.5 20.3 2.2 85.5 - 14.5 28.2 - 71.8
[79,64,6]2 DECTED 84.0 14.5 1.5 89.0 - 11.0 20.5 - 79.5
[36,32,4]16 SSCDSD 85.7 12.8 1.5 91.5 - 8.5 39.9 - 60.1

well with the number of entropy symbols per cacheline (64)
and with the byte-addressable memory organization. For in-
stance, both Entropy-4 and Entropy-16 do worse than Entropy-
8 because the entropy symbol size results in too many aliases
at the cacheline level and because the larger symbol size is
less efficient, respectively.

The other four policies all significantly under-performed
our Entropy-Z variants, with the exception of Hamming. It
performs nearly as well as the Entropy-4 policy for integer
workloads but fails on many low-entropy cases that have low
Hamming distances.

Because Entropy-8 performed the best for all benchmarks
and for all ECC constructions, we exclusively use it in all
remaining evaluations.

7.3 Recovery Breakdown Without Hashes
Having established Entropy-8 as the best recovery policy, we
now consider the impact of its forced panics on the the suc-
cessful recovery rate and the MCE rate. Again, we evaluate
SDECC for each ECC using its conventional form, without
any second-tier hashes to help prune the lists of candidates.

The overall results with forced panics taken (main results,
gray cell shading) and not taken are shown in Table 4. The
results for Entropy-8 on three codes shown earlier in Fig. 6 are
repeated in this table for comparison (i.e., the corresponding
success rates when panics are not taken). There are two base-
line DUE recovery policies: conventional (always panic for
every DUE) and random (choose a candidate randomly, i.e.,
PG).

We observe that when panics are taken the MCE rate drops
significantly by a factor of up to 7.3× without significantly re-
ducing the success rate. This indicates that our PanicThresh-
old mechanism appropriately judges when we are unlikely to
correctly recover the original information.

These results also show the impact of code construction on
successes, panics, and MCEs. When there are fewer average
candidates µ then we succeed more often and induce MCEs
less often. The [72,64,4]2 SECDED constructions perform
similarly to their [39,32,4]2 variants even though the former
have lower baseline PG. This is a consequence of our Entropy-
8 policy: larger n combined with lower µ provides the greatest
opportunity to differentiate candidates with respect to overall
intra-cacheline entropy. For the same n, however, the effect
of SECDED construction is more apparent. The Davydov
codes recover about 3-4% more frequently than their Hsiao
counterparts when panics are not taken (similar to the baseline
improvement in PG). When panics are taken, however, the
differences in construction are less apparent because the pol-
icy PanicThreshold does not take into account Davydov’s
typically lower number of candidates.

9

0

0.2

0.4

0.6

0.8

1

40
0.

pe
rlb

en
ch

40
1.

bz
ip
2

40
3.

gc
c

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r

41
0.

bw
av

es

43
5.

gr
om

ac
s

43
6.

ca
ct
us

A
D
M

44
4.

na
m

d

44
7.

de
al
II

45
0.
so
pl
ex

45
3.

po
vr

ay

45
4.

ca
lc
ul
ix

45
9.

G
em

sF
D
TD

46
5.

to
nt

o

47
0.

lb
m

G
eo

. M
ea

n

F
ra

c
ti
o
n

o
f
P

a
n
ic

s

Integer Benchmarks Float Benchmarks

(a) Recovery Breakdown
0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
 o

f
D

U
E

s

co
nv

en
tio

na
l

ra
nd

om

Successful recovery

(correct)

(b) Forced Panic Breakdown

Baselines
SDECC

Overall

Forced panic

MCE

True positive panic

(avoided MCE)

False positive panic

(would be correct)

Figure 7: Detailed breakdown of DUE recovery results when forced panics are taken and no hashes are used. Results are shown for all seven
ECC constructions, listed left to right within each cluster: [39,32,4]2 Hsiao SECDED – [39,32,4]2 Davydov SECDED – [72,64,4]2 Hsiao SECDED –
[72,64,4]2 Davydov SECDED – [45,32,6]2 DECTED – [79,64,6]2 DECTED – [36,32,4]16 SSCDSD ChipKill-Correct.

We examine the breakdown between successes, panics, and
MCEs in more detail. Fig. 7 depicts the DUE recovery break-
downs for each ECC construction and SPEC CPU2006 bench-
mark when forced panics are taken. Fig. 7(a) shows the frac-
tion of DUEs that result in success (black), panics (gray), and
MCEs (white). For clarity, the two baselines from Table 4 are
repeated on the left and the same panic taken results from the
table are repeated on the right (SDECC Overall). Fig. 7(b) fur-
ther breaks down the forced panics (gray from Fig. 7(a)) into
a fraction that are false positive (light purple, and would have
otherwise been correct) and others that are true positive (dark
blue, and managed to avoid an MCE). Each cluster of seven
stacked bars corresponds to the seven ECC constructions.

We achieve much lower MCE rates than the random baseline
yet also panic much less often than the conventional baseline
for all benchmarks, as shown by Fig. 7(a). Our policy per-
forms best on integer benchmarks due to their lower average
intra-cacheline entropy. For certain floating-point benchmarks,
however, there are many forced panics because they frequently
have high data entropy above PanicThreshold (e.g., as seen
earlier with 444.namd in Fig. 5b). A PanicThreshold of
4.5 bits for these cases errs on the side of caution as indicated
by the false positive panic rate, which can be up to 50%. With-
out more side information, for high-entropy benchmarks, we
believe it would be difficult for any alternative policy to fre-
quently recover the original information with a low MCE rate
and few false positive panics.

With almost no hardware overheads, SDECC used with
SSCDSD ChipKill can recover correctly from up to 85.7%
of double-chip DUEs while eliminating 87.2% of would-be
panics; this could improve system availability considerably.
However, SDECC with ChipKill introduces a 1% risk of con-
verting a DUE to an MCE. Without further action taken to
mitigate MCEs, this small risk may be unacceptable when
application correctness is of paramount importance.

7.4 Recovery with Hashes

Table 5: Prct. Breakdown of SDECC Entropy-8 Policy with Hashes
(S = success, P = panic, M = MCE)

checksum size panics taken panics not taken random baseline
S P M S P M S P M

conv. baseline - 100 -
[72,64,4]2 Hsiao – 2-bit DUEs

none 71.6 23.7 4.7 75.3 - 24.7 5.0 - 95.0
4-bit 87.8 11.4 0.8 93.7 - 6.3 28.8 - 71.2
8-bit 98.56 1.36 0.08 99.4 - 0.6 86.6 - 13.3

[36,32,4]16 SSCDSD ChipKill-Correct – 2-chip DUEs
none 85.7 12.8 1.5 91.5 - 8.5 39.9 - 60.1
4-bit 98.05 1.86 0.09 99.2 - 0.8 77.0 - 23.0
8-bit 99.940 0.058 0.002 99.98 - 0.02 98.1 - 1.9
16-bit 99.9999 9e-5 0* 100* - 0* 99.992 - 0.008

*out of 20 million DUE trials

The second-tier hash can dramatically reduce the SDECC
panic and MCE rates by pruning the list of candidate messages
before applying the recovery policy.

The recovery breakdowns for second-tier hashes per cache-
line on overall MCE rates using [72,64,4]2 Hsiao SECDED
and [36,32,4]16 SSCDSD ChipKill-Correct ECCs are shown
in Table 5. The results for the non-hash cases are repeated
from Table 4 for comparison. We do not include 16-bit hashes
for the SECDED code because they are unsupported in our
architecture.

The results show that even a small 4-bit hash added to every
cacheline can reduce the induced MCE rate by up to substantial
16.6×. When high reliability is required, we suggest to use
SDECC with a hash of at least 8 bits. Using SDECC with
ChipKill and an 8-bit hash, we successfully recovered from
99.940% of double-chip DUEs; with a 16-bit hash, no MCE
occurred at all in 20 million trials.

SDECC with hashes can recover from nearly 100% of
double-chip DUEs with 4× lower storage overhead than a
pure DSC ECC solution and with no common-case perfor-
mance or notable energy overheads.

8. APPROXIMATION EVALUATION
We have found that SDECC without second-tier hashes can
still recover a large fractions of DUEs and requires almost no

10

hardware changes. There are many approximate computing
applications where some degree of output error is tolerable, but
errors should be controlled as much as possible without adding
too much overhead. We briefly study the effect of SDECC on
application output quality using SECDED (without hash) due
to its low latency, area, performance, and energy overheads
which are well suited for approximate applications and cost-
sensitive systems.

8.1 Methodology
We built AxBench [74] for RV64G in a similar fashion to
Sec. 7.1 although we could not run kmeans with the proxy
kernel successfully. We use our modified version of Spike
to run each benchmark to completion 1000 times. For each
run, using the [72,64,4]2 Hsiao SECDED code, we inject
one DUE on a random demand memory read, emulate the
candidate message computation and Entropy-8 recovery policy,
and observe the effects on program behavior. No hashes are
used.

8.2 Impact on Output Quality
The percent breakdown of attempted DUE recoveries (suc-
cess, forced panic, or total MCEs) for each benchmark is
shown in the top part of Table 6. The bottom part of the table
breaks down the MCE total further with respect to all DUEs
injected. For normal program termination, output quality is
judged using application-specific metrics defined by AxBench.
Consistent with AxBench, we define a tolerable output to be
within 10% of the “golden” result [74]. Successes and benign
MCEs both cause 0% output error, while tolerable NSDCs
are MCEs that result in 0% < output error < 10%. Intol-
erable NSDCs result in output error ≥ 10%. For abnormal
program terminations, we characterize the cause: intentional
forced panic caused by our policy, or unintentional crashes
and hangs caused by induced MCEs.

For most AxBench benchmarks, our Entropy-8 recovery pol-
icy results in similar success, forced panic, and total MCE rates
to our findings with the traces from the SPEC CPU2006 suite.
The most challenging case here is fft, which has roughly
2× the MCE rate and 3× to 4× the forced panic rate of the
other five benchmarks; this is because the program’s inputs
and computations tend to produce high-entropy data.

The MCE breakdown demonstrates that intolerable NSDCs
induced by SDECC are uncommon. Most induced MCEs
are actually benign; this agrees with prior work on SDCs
[17, 33, 55]. We find that a significant fraction of MCEs cause
unintended crashes where the final outcome is no worse than
the conventional baseline that always panics for every DUE. A
small fraction of the MCEs result in measurable output error,
but in the majority of cases, even these produce tolerable NS-
DCs within our 10% output quality window. In the worst case,
1.0% of attempted DUE recoveries result in intolerable NS-
DCs, while in the best case, it is just 0.1%. Thus, SDECC can
be a useful low-cost aid to improve availability and reliability
of approximate computing systems with minimal overheads.

9. DISCUSSION
We briefly estimate the system-level availability benefits of
SDECC and discuss the alternative use of stronger codes.

Table 6: Prct. Breakdown of Output Quality using Entropy-8 Policy and
Hsiao [72,64,4]2 SECDED Code without Hash

blackscholes fft inversek2j jmeint jpeg sobel
Success 83.8 49.5 82.9 90.4 92.4 90.8
Forced Panic 9.6 38.6 11.4 4.9 4.6 6.0
MCE Total 6.4 11.8 5.5 4.5 2.8 3.1

Breakdown of MCE Total
Benign 4.8 6.5 4.2 3.2 1.5 2.5
Crash 0.5 0.9 0.2 0.8 0.6 0.5
Hang 0.4 0.0 0.0 0.0 0.0 0.0
Tol. NSDC 0.5 3.3 0.6 0.1 0.4 0.0
Intol. NSDC 0.1 1.0 0.4 0.4 0.3 0.1

9.1 System-Level Benefits
We project the impact of SDECC on a typical supercom-
puter workload. Consider a hypothetical warehouse-scale
computer that is similar to Blue Waters with 22640 compute
nodes, where each has 64 GB of DRAM protected using the
[36,32,4]16 SSCDSD ChipKill-Correct code, and the memory
double-chip DUE rate is 15.98 FIT/GB [38]. We use Tiwari’s
checkpoint model [64]. Suppose an application nominally
runs for 500 hours on the system, and that checkpoints take
30 minutes to save or restore and are taken according to the
estimated optimal checkpoint interval. We assume that panics
caused by memory DUEs are the only cause of failure that
warrants checkpointing, and again that hashes in error.

The projected results for the baseline system and SDECC
both with and without hashes is shown in Table 7. We find that
SDECC alone can deliver a substantial 12% speedup of the
application even if no hashes are used. However, an induced
MCE is expected to occur once every 2900 hours, or around
once in every 5.5 runs of the application. If we use an 8-bit
hash can substantially reduce the optimal checkpoint interval
to deliver a 18.1% speedup, with an induced MCE occurring
only once every 2.2 million hours. A 16-bit hash could obviate
the need to checkpoint the application entirely (the expected
SDECC forced panic rate is just 0.9 ppm). Thus, we believe
our approach could substantially improve the reliability and
availability of a supercomputer when memory errors are a
significant source of failures.

9.2 SDECC vs. Stronger Codes
One cannot achieve 100% DUE recovery rates without using
considerably stronger ECCs or larger second-tier hashes, both
of which are impractical. For instance, a SECDED code could
be either be upgraded to a DEC code (estimated 2× parity stor-
age, 2× latency, and 14× area overhead vs. SECDED [47]).
Alternatively, a [77,64,5]2 4-error-detect checksum construc-
tion could be used, but it is not supported by our architecture
because it needs 13 second-tier checksum bits per cacheline
(only 8 checksum/hash bits can be supported). For ChipKill,
we would need either a Double ChipKill-Correct construction
(estimated 2× parity storage, 2× bandwidth overheads vs. SS-
CDSD [34, 77]) or a significantly more complex [38,32,5]16
4-symbol-detect checksum construction, which needs 24 extra
checksum bits per cacheline (1.5× to 3× more than proposed
for our hashes).

10. RELATED WORK
Resilient memory architecture. Recently, the community has
become concerned about worsening memory reliability, which
can have profound implications for large-scale systems [5, 11,

11

Table 7: Projected Benefits of SDECC for a Supercomputing Application
using [36,32,4]16 SSCDSD ChipKill-Correct ECC

scheme/hash size opt. chkpt. intvl. [64] speedup util. MTT ind. MCE
Baseline 6.6 hours - 84.4% N/A
SDECC/none 18.4 hours 12.0% 94.5% 2.9 Khours
SDECC/4-bit 48.2 hours 16.1% 98.0% 48.0 Khours
SDECC/8-bit 272.9 hours 18.1% 99.7% 2.2 Mhours
SDECC/16-bit N/A 18.5% 100% N/A

19,22,35,39,49,56,58,60,61,62,66]. Problems with memory
resiliency can largely be attributed to manufacturing process
variations [6, 8, 13]. Accordingly, researchers have generally
focused on lowering the overhead of strong ECC implementa-
tions [3, 4, 14, 23, 24, 28, 29, 31, 32, 34, 46, 53, 65, 70, 71, 76, 77]
and dealing with hard faults [3, 4, 15, 45, 46, 52, 57, 71, 78].
Three state-of-the-art works relate closely to our contributions.
Bamboo ECC [31], Error Pattern Transformation [15], and
XED [46] each propose ways to reduce the occurrence of
DUEs without necessarily increasing code strength, but unlike
this work, they do not consider how to handle DUEs when
they do occur.

List decoding. SDECC is related to the theory of list decod-
ing [16,20,63,72]. Unfortunately, the list decoding theory has
not produced a low-cost and computationally-efficient decoder
suitable for use with memory. The distinction of our approach
is that it retains all the advantages of conventional ECCs yet
it can also produce a list of candidate codewords whenever a
DUE occurs. We also describe a novel methodology to choose
the best candidate codeword given SI about memory contents.

11. CONCLUSION
SDECC is a new approach to improve the resiliency of systems
by recovering from a large fraction of memory DUEs. SDECC
is based on the fundamental observation that when a DUE
occurs, there are a small number of candidate codewords that
can be computed, wherein one is practically guaranteed to be
correct. Policies that leverage SI about memory contents can
be used to recover successfully from many DUEs when they
occur, while incurring negligible overheads in the common
cases. Directions for future work include adaptive software
and ECC support for memory fault models and development of
software mechanisms that can eventually verify the correctness
of SDECC recovery.

Acknowledgment
This work was supported by the 2016 USA Qualcomm Innova-
tion Fellowship, the 2016 UCLA Dissertation Year Fellowship,
and USA National Science Foundation grants CCF-1029030
(Variability Expedition) and CCF-1150212 (CAREER). The
authors thank Dr. Fred Sala and Saptadeep Pal at UCLA for
helpful discussions and Dr. Greg Wright from Qualcomm
Research for his feedback and guidance of this work.

12. REFERENCES
[1] “Intel 64 and IA-32 Architectures Software Developer Manuals.”

[Online]. Available:
http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html

[2] A. Alameldeen and D. Wood, “Frequent Pattern Compression: A
Significance-Based Compression Scheme for L2 Caches,” University of
Wisconsin, Madison, Tech. Rep., 2004.

[3] A. R. Alameldeen, Z. Chishti, C. Wilkerson, W. Wu, and S.-L. Lu,
“Adaptive Cache Design to Enable Reliable Low-Voltage Operation,”

IEEE Transactions on Computers (TC), vol. 60, no. 1, pp. 50–63, 2011.

[4] A. R. Alameldeen, I. Wagner, Z. Chishti, W. Wu, C. Wilkerson, and
S.-L. Lu, “Energy-Efficient Cache Design Using Variable-Strength
Error-Correcting Codes,” in Proceedings of the ACM/IEEE
International Symposium on Computer Architecture (ISCA), 2011.

[5] E. Baseman, N. DeBardeleben, K. Ferreira, S. Levy, S. Raasch,
V. Sridharan, T. Siddiqua, and Q. Guan, “Improving DRAM Fault
Characterization Through Machine Learning,” in IEEE/IFIP
International Conference on Dependable Systems and Networks
Workshops (DSN-W), 2016.

[6] S. Borkar, “Designing Reliable Systems from Unreliable Components:
The Challenges of Transistor Variability and Degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10–16, 2005.

[7] S. Borkar and A. A. Chien, “The Future of Microprocessors,”
Communications of the ACM, vol. 54, no. 5, pp. 67–77, 2011.

[8] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,
“Parameter Variations and Impact on Circuits and Microarchitecture,” in
Proceedings of the ACM/IEEE Design Automation Conference (DAC),
2003.

[9] R. Bose and D. Ray-Chaudhuri, “On a Class of Error Correcting Binary
Group Codes,” Information and Control, vol. 3, no. 1, pp. 68–79, 1960.

[10] A. Davydov and L. Tombak, “An Alternative to the Hamming Code in
the Class of SEC-DED Codes in Semiconductor Memory,” IEEE
Transactions on Information Theory, vol. 37, no. 3, pp. 897–902, 1991.

[11] N. DeBardeleben, S. Blanchard, V. Sridharan, S. Gurumurthi,
J. Stearley, K. B. Ferreira, and J. Shalf, “Extra Bits on SRAM and
DRAM Errors - More Data from the Field,” in Workshop on Silicon
Errors in Logic – System Effects (SELSE), 2014.

[12] T. J. Dell, “A White Paper on the Benefits of Chipkill-Correct ECC for
PC Server Main Memory,” IBM Microelectronics Division, Tech. Rep.,
1997.

[13] N. Dutt, P. Gupta, A. Nicolau, A. BanaiyanMofrad, M. Gottscho, and
M. Shoushtari, “Multi-Layer Memory Resiliency,” in Proceedings of
the ACM/IEEE Design Automation Conference (DAC), 2014.

[14] H. Duwe, X. Jian, and R. Kumar, “Correction Prediction: Reducing
Error Correction Latency for On-Chip Memories,” in Proceedings of
the IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2015.

[15] H. Duwe, X. Jian, D. Petrisko, and R. Kumar, “Rescuing Uncorrectable
Fault Patterns in On-Chip Memories through Error Pattern
Transformation,” in Proceedings of the ACM/IEEE International
Symposium on Computer Architecture (ISCA), 2016.

[16] P. Elias, “List Decoding for Noisy Channels,” Massachusetts Institute of
Technology (MIT), Tech. Rep., 1957.

[17] B. Fang, Q. Lu, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi,
“ePVF: An Enhanced Program Vulnerability Factor Methodology for
Cross-layer Resilience Analysis,” in Proceedings of the IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2016.

[18] J. D. Gelas, “The Intel Xeon E5 v4 Review: Testing Broadwell-EP
With Demanding Server Workloads,” 2016. [Online]. Available:
http://www.anandtech.com/show/10158/the-intel-xeon-e5-v4-review

[19] M. Gottscho, M. Shoaib, S. Govindan, B. Sharma, D. Wang, and
P. Gupta, “Measuring the Impact of Memory Errors on Application
Performance,” IEEE Computer Architecture Letters (CAL), 2016.

[20] V. Guruswami, “List Decoding of Error-Correcting Codes,” Ph.D.
Dissertation, Massachusetts Institute of Technology (MIT), 2001.

[21] M. Y. Hsiao, “A Class of Optimal Minimum Odd-Weight-Column
SEC-DED Codes,” IBM Journal of Research and Development, vol. 14,
no. 4, pp. 395–401, 1970.

[22] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic Rays Don’t
Strike Twice: Understanding the Nature of DRAM Errors and the
Implications for System Design,” in Proceedings of the ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2012.

[23] X. Jian, H. Duwe, J. Sartori, V. Sridharan, and R. Kumar, “Low-Power,
Low-Storage-Overhead Chipkill Correct via Multi-line Error
Correction,” in Proceedings of the IEEE International Conference for

12

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.anandtech.com/show/10158/the-intel-xeon-e5-v4-review

High Performance Computing, Networking, Storage and Analysis (SC),
2013.

[24] X. Jian and R. Kumar, “ECC Parity: A Technique for Efficient Memory
Error Resilience for Multi-Channel Memory Systems,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2014.

[25] X. Jian, J. Sartori, H. Duwe, and R. Kumar, “High Performance, Energy
Efficient Chipkill Correct Memory with Multidimensional Parity,” IEEE
Computer Architecture Letters (CAL), vol. 12, no. 2, pp. 39–42, 2013.

[26] X. Jian, V. Sridharan, and R. Kumar, “Parity Helix: Efficient Protection
for Single-Dimensional Faults in Multi-Dimensional Memory Systems,”
in Proceedings of the IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2016.

[27] S. Kaneda and E. Fujiwara, “Single Byte Error Correcting – Double
Byte Error Detecting Codes for Memory Systems,” IEEE Transactions
on Computers (TC), vol. C-31, no. 7, pp. 596–602, 1982.

[28] D. W. Kim and M. Erez, “RelaxFault Memory Repair,” in Proceedings
of the ACM/IEEE International Symposium on Computer Architecture
(ISCA), 2016.

[29] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. C. Hoe, “Multi-Bit
Error Tolerant Caches Using Two-Dimensional Error Coding,” in
Proceedings of the ACM/IEEE International Symposium on
Microarchitecture (MICRO), 2007.

[30] J. Kim, M. Sullivan, E. Choukse, and M. Erez, “Bit-Plane Compression:
Transforming Data for Better Compression in Many-core Architectures,”
in Proceedings of the ACM/IEEE International Symposium on
Computer Architecture (ISCA), 2016.

[31] J. Kim, M. Sullivan, and M. Erez, “Bamboo ECC: Strong, Safe, and
Flexible Codes for Reliable Computer Memory,” in Proceedings of the
IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2015.

[32] J. Kim, M. Sullivan, S. Lym, and M. Erez, “All-Inclusive ECC:
Thorough End-to-End Protection for Reliable Computer Memory,” in
Proceedings of the ACM/IEEE International Symposium on Computer
Architecture (ISCA), 2016.

[33] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and
Y. Zhou, “Understanding the Propagation of Hard Errors to Software
and Implications for Resilient System Design,” in Proceedings of the
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2008.

[34] S. Li, D. H. Yoon, K. Chen, and J. Zhao, “MAGE : Adaptive
Granularity and ECC for Resilient and Power Efficient Memory
Systems,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2012.

[35] X. Li, M. C. Huang, K. Shen, and L. Chu, “A Realistic Evaluation of
Memory Hardware Errors and Software System Susceptibility,” in
USENIX Annual Technical Conference (ATC), 2012.

[36] S. Lin and D. J. Costello, Error Control Coding. Prentice Hall, 2004.

[37] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value Locality and
Load Value Prediction,” in Proceedings of the ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 1996.

[38] C. D. Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and
W. Kramer, “Lessons Learned from the Analysis of System Failures at
Petascale: The Case of Blue Waters,” in Proceedings of the IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2014, pp. 610–621.

[39] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting Memory Errors in
Large-Scale Production Data Centers: Analysis and Modeling of New
Trends from the Field,” in Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2015.

[40] J. S. Miguel, J. Albericio, N. E. Jerger, and A. Jaleel, “The Bunker
Cache for Spatio-Value Approximation,” in Proceedings of the
ACM/IEEE International Symposium on Microarchitecture (MICRO),
2016.

[41] J. S. Miguel, M. Badr, and N. E. Jerger, “Load Value Approximation,”
in Proceedings of the ACM/IEEE International Symposium on
Microarchitecture (MICRO), 2014.

[42] S. Mitra and K. Kim, “X-Compact: An Efficient Response Compaction

Technique,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 23, no. 3, pp. 421–432,
2004.

[43] S. Mittal, “A Survey of Architectural Techniques for Managing Process
Variation,” ACM Computing Surveys, vol. 48, no. 4, 2016.

[44] S. Mittal and J. Vetter, “A Survey of Architectural Approaches for Data
Compression in Cache and Main Memory Systems,” IEEE Transactions
on Parallel and Distributed Systems (TPDS), vol. 27, no. 5, pp.
1524–1536, 2015.

[45] P. J. Nair, D. A. Roberts, and M. K. Qureshi, “Citadel: Efficiently
Protecting Stacked Memory from TSV and Large Granularity Failures,”
ACM Transactions on Architecture and Code Optimization (TACO),
vol. 12, no. 4, 2016.

[46] P. J. Nair, V. Sridharan, and M. K. Qureshi, “XED: Exposing On-Die
Error Detection Information for Strong Memory Reliability,” in
Proceedings of the ACM/IEEE International Symposium on Computer
Architecture (ISCA), 2016.

[47] R. Naseer and J. Draper, “Parallel Double Error Correcting Code
Design to Mitigate Multi-Bit Upsets in SRAMs,” Proceedings of the
IEEE European Solid-State Circuits Conference (ESSCIRC), 2008.

[48] Q. Nguyen, “RISC-V Tools (GNU Toolchain, ISA Simulator, Tests) –
git commit 816a252.” [Online]. Available:
https://github.com/riscv/riscv-tools

[49] P. Nikolaou, Y. Sazeides, L. Ndreu, and M. Kleanthous, “Modeling the
Implications of DRAM Failures and Protection Techniques on
Datacenter TCO,” in Proceedings of the ACM/IEEE International
Symposium on Microarchitecture (MICRO), 2015.

[50] G. Pekhimenko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry, “Linearly Compressed Pages: A
Low-Complexity, Low-Latency Main Memory Compression
Framework,” in Proceedings of the ACM/IEEE International
Symposium on Microarchitecture (MICRO), 2013.

[51] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Base-Delta-Immediate Compression: Practical Data
Compression for On-Chip Caches,” in Proceedings of the ACM
International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2012.

[52] M. K. Qureshi, “Pay-As-You-Go: Low-Overhead Hard-Error
Correction for Phase Change Memories,” in Proceedings of the
ACM/IEEE International Symposium on Microarchitecture (MICRO),
2011.

[53] M. K. Qureshi and Z. Chishti, “Operating SECDED-Based Caches at
Ultra-Low Voltage with FLAIR,” in Proceedings of the IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2013. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6575314

[54] A. Rahimi, L. Benini, and R. K. Gupta, “Variability Mitigation in
Nanometer CMOS Integrated Systems: A Survey of Techniques From
Circuits to Software,” Proceedings of the IEEE, vol. 104, no. 7, pp.
1410–1448, 2016.

[55] L. Rashid, K. Pattabiraman, and S. Gopalakrishnan, “Characterizing the
Impact of Intermittent Hardware Faults on Programs,” IEEE
Transactions on Reliability (TR), vol. 64, no. 1, pp. 297–310, 2015.

[56] F. Sala, H. Duwe, L. Dolecek, and R. Kumar, “A Unified Framework
for Error Correction in On-chip Memories,” in Proceedings of the
IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W), 2016.

[57] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ECP, not ECC,
for Hard Failures in Resistive Memories,” Proceedings of the
ACM/IEEE International Symposium on Computer Architecture (ISCA),
2010.

[58] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM Errors in the
Wild: A Large-Scale Field Study,” Communications of the ACM,
vol. 54, no. 2, pp. 100–107, 2011.

[59] J. C. Smolens, “Fingerprinting: Hash-Based Error Detection in
Microprocessors,” Ph.D. Dissertation, Carnegie Mellon University,
2008.

[60] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and
S. Gurumurthi, “Feng Shui of Supercomputer Memory: Positional

13

https://github.com/riscv/riscv-tools
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6575314
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6575314

Effects in DRAM and SRAM Faults,” in Proceedings of the IEEE
International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), 2013.

[61] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,
J. Shalf, and S. Gurumurthi, “Memory Errors in Modern Systems: The
Good, The Bad, and The Ugly,” in Proceedings of the ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2015.

[62] V. Sridharan and D. Liberty, “A Study of DRAM Failures in the Field,”
in Proceedings of the IEEE International Conference on High
Performance Computing, Networking, Storage and Analysis (SC), 2012.

[63] M. Sudan, “List Decoding: Algorithms and Applications,” in Springer
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2001,
pp. 25–41.

[64] D. Tiwari, S. Gupta, and S. S. Vazhkudai, “Lazy Checkpointing:
Exploiting Temporal Locality in Failures to Mitigate Checkpointing
Overheads on Extreme-Scale Systems,” in Proceedings of the
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2014.

[65] A. N. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis, and N. P.
Jouppi, “LOT-ECC: LOcalized and Tiered Reliability Mechanisms for
Commodity Memory Systems,” in Proceedings of the ACM/IEEE
International Symposium on Computer Architecture (ISCA), 2012.

[66] S. Wang, H. C. Hu, H. Zheng, and P. Gupta, “MEMRES: A Fast
Memory System Reliability Simulator,” IEEE Transactions on
Reliability (TR), vol. 65, no. 4, pp. 1783–1797, 2016.

[67] A. Waterman, “RISC-V Proxy Kernel – git commit 85ae17a.” [Online].
Available: https://github.com/riscv/riscv-pk/commit/85ae17a

[68] A. Waterman and Y. Lee, “Spike, a RISC-V ISA Simulator – git commit
3bfc00e.” [Online]. Available: https://github.com/riscv/riscv-isa-sim

[69] A. Waterman, Y. Lee, D. Patterson, and K. Asanovic, “The RISC-V
Instruction Set Manual Volume I: User-Level ISA Version 2.0,” 2014.
[Online]. Available: https://riscv.org

[70] W. Wen, M. Mao, X. Zhu, S. H. Kang, D. Wang, and Y. Chen,
“CD-ECC: Content-Dependent Error Correction Codes for Combating
Asymmetric Nonvolatile Memory Operation Errors,” in Proceedings of
the ACM/IEEE International Conference on Computer-Aided Design
(ICCAD), 2013.

[71] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar,
and S.-l. Lu, “Reducing Cache Power with Low-Cost, Multi-Bit
Error-Correcting Codes,” in Proceedings of the ACM/IEEE
International Symposium on Computer Architecture (ISCA), 2010.

[72] J. Wozencraft, “List Decoding,” Quarterly Progress Report, 1958.

[73] J. Yang, Y. Zhang, and R. Gupta, “Frequent Value Compression in Data
Caches,” in Proceedings of the ACM/IEEE International Symposium on
Microarchitecture (MICRO), 2000.

[74] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran,
“AxBench: A Multiplatform Benchmark Suite for Approximate
Computing,” IEEE Design & Test, vol. 34, no. 2, pp. 60–68, 2017.

[75] A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh,
O. Mutlu, and T. C. Mowry, “Mitigating the Memory Bottleneck with
Approximate Load Value Prediction,” IEEE Design & Test, vol. 33,
no. 1, pp. 32–42, 2016.

[76] D. H. Yoon and M. Erez, “Memory Mapped ECC: Low-Cost Error
Protection for Last Level Caches,” in Proceedings of the ACM/IEEE
International Symposium on Computer Architecture (ISCA), 2009.

[77] D. H. Yoon and M. Erez, “Virtualized and Flexible ECC for Main
Memory,” in Proceedings of the ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2010.

[78] D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan, N. P. Jouppi,
and M. Erez, “FREE-p: Protecting Non-Volatile Memory Against both
Hard and Soft Errors,” in Proceedings of the IEEE International
Symposium on High Performance Computer Architecture (HPCA),

2011.

14

https://github.com/riscv/riscv-pk/commit/85ae17a
https://github.com/riscv/riscv-isa-sim
https://riscv.org

	Introduction
	ECC Background
	Key Concepts
	Minimum Distance and Error Correction Guarantees
	ECC Decoder Assumptions

	SDECC Theory
	Number of Candidate Codewords
	Average Number of Candidates
	Computing the List of Candidates
	Pruning Candidates using a Lightweight Hash

	SDECC Analysis of Existing ECCs
	SECDED and DECTED
	SSCDSD (ChipKill-Correct)

	SDECC Architecture
	Penalty Box Hardware
	Software Stack
	Lightweight Hash Implementation

	Data Recovery Policy
	Observations on Data Similarity
	Entropy-Z Policy

	Reliability Evaluation
	Methodology
	Comparison of Data Recovery Policies
	Recovery Breakdown Without Hashes
	Recovery with Hashes

	Approximation Evaluation
	Methodology
	Impact on Output Quality

	Discussion
	System-Level Benefits
	SDECC vs. Stronger Codes

	Related Work
	Conclusion
	References

