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Abstract—A common way to protect data stored in DRAM and
related memory systems is through the use of an error-correcting
code such as the extended Hamming code. Traditionally, these
error-correcting codes provide equal protection guarantees to all
messages. In this work, we focus on unequal message protection
(UMP), in which a subset of messages is deemed as special, and is
afforded additional error-correction protection while maintaining
the same number of redundancy bits as the baseline code. UMP is
a powerful approach when the special messages are chosen based
on the knowledge of data patterns in context. Our objective is
to construct deterministic, algebraic codes with guaranteed UMP
properties, derive their cardinality bounds using novel combina-
torial techniques, and to demonstrate their efficacy for realistic
memory benchmarks. We first introduce a UMP alternative to
the single-bit parity-check code, and then we generalize to a
broader UMP code family, including a UMP alternative to the
extended Hamming code, offering full double-error correction
protection to special messages. Our UMP constructions, applied
to main memory in high-performance computing applications,
could lead to significant system-level benefits such as less frequent
checkpoints in supercomputers and decreased risk of catastrophic
failure from erroneous special messages.

I. INTRODUCTION

Error-correcting codes (ECCs) play a critical role in mem-
ory resiliency. Traditionally, one of the most important metrics
of interest is the minimum distance of a code, which provides
guarantees on error-correction and error-detection capabili-
ties. Intriguingly, side-information about the underlying data
and communication channel can be used to enhance error-
correction probabilities, extending the traditional notions from
classical coding theory.

Recently, we proposed Software-Defined Error-Correcting
Codes (SDECC), a class of heuristic techniques to recover
from detected-but-uncorrectable errors (DUEs) [3], [4], [5].
SDECC can be considered as a highly practical list-decoding
([6], [7], [8]) framework that utilizes any linear code capable
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of correcting t errors and detecting t+1 errors. Traditionally,
when a DUE occurs, the memory system will either crash or
restore to a checkpoint [9]. In our SDECC framework, when a
DUE occurs, we first compute a list of candidate codewords—
the closest neighboring codewords—and then probabilistically
decode based on available side-information. SDECC is appli-
cable to a wide variety of memory applications and systems
ranging from large-scale servers in data centers to embedded
systems in Internet-of-Things devices.

In this work, we take a different approach and focus on the
encoding-side of SDECC: instead of using side-information to
heuristically decode, we a priori designate specific messages
to have extra protection against errors. We designate two
classes of messages, normal and special, and they are mapped
to normal and special codewords, respectively. When dealing
with the underlying data, we refer to the messages; when dis-
cussing error detection/correction capabilities we refer to the
codewords. Within the SDECC framework, special codewords
can be viewed as a set of codewords with the property that
no two elements from the set are ever in the same candidate
list, i.e., when a DUE occurs, there will never be two or more
special codewords among the neighboring codewords.

This type of unequal message protection (UMP) is funda-
mentally different from unequal error protection (UEP) [10],
in which all codewords have extra protection for specific bit
positions or certain error patterns (such as adjacent bit errors).
UMP is a powerful approach when the special messages
are chosen with regard to both the relative frequency and
meaning of the stored data. In particular, UMP is useful when
compression is not feasible, yet specific messages—or parts
of specific messages—are very frequently stored/transmitted,
as is the case in modern random-access memories [4], [5].
Additionally, given side-information about the system-level
meaning of underlying messages, we may add extra protection
to those messages whose miscorrections would be very costly.

For practical applications, most recent processors with
large capacity on-chip caches have ECC protected L2 and/or
L3 caches. Some common and recent examples include
Qualcomm Centriq 2400 [11], AMD Athlon [12], AMD
Opteron [13], and IBM Power 4 [14] processors. Additionally,
in random-access memories, such as DRAM and SRAM [15],
[16], the three most commonly used ECC classes are the
single-bit parity-check code, the extended Hamming code, and
the ChipKill (or equivalent) code [17]. The choice of appro-
priate ECC class depends on many system-level requirements
including latency, energy, storage overhead, etc. For each of
these codes, we create an alternative UMP code with enhanced
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error-correcting features, while still using the same number of
redundancy bits. For example, the extended Hamming code
is capable of correcting any single-bit error and detecting
any double-bit error; our UMP alternative code sacrifices
the universal double-bit detection in order to grant double-
bit correction to special codewords. For a given set of code
parameters (i.e., code size, dimension, and detection/correction
properties), our goal is to maximize the number of special
messages.

One crucial property of our proposed UMP scheme is that
both classes of messages have the same length (as well as both
classes of codewords). This property allows our coding scheme
to be directly applicable to the vast majority of memory
systems, which use fixed bit-length architectures. While it is
possible to achieve a similar protection outcome by using,
for example, a Hamming code for normal messages and a
BCH code for special messages, this scheme would increase
the codeword length for special codewords, thereby not fitting
into fixed memory widths.

The paper is organized as follows. The remainder of this
section is an overview of related work. In Section II, we pro-
vide preliminaries, notation, and objectives. Both Sections III
and IV contain—for their respective codes—a derivation for
the modified sphere-packing bounds on the number of special
messages, an explicit code construction, a proof of correction
properties, and a walkthrough of the decoding process. Sec-
tion III focuses on the UMP alternative to the parity-check
code, in which we trade-off single-bit detection in favor of
single-bit correction for special codewords. Additionally, we
show how an additional redundancy bit can be used to revive
the single-error detection property for normal codewords.
Section IV deals with the UMP alternative for the extended
Hamming code. In Section V, we derive a novel programming
bound for the number of special messages for our UMP codes.
In Section VI, we discuss various strategies for the special
message mapping and we investigate the benefits of our UMP
codes on real-world memory benchmarks. We conclude in
Section VII.

A. Related Work
The majority of research into UEP codes has focused on bit-

wise UEP, in which specific positions of a codeword are more
robust to errors [10], [18]. Masnick and Wolf [10] created
a framework for constructing linear bit-wise UEP codes, in
which each bit in a codeword is assigned an error protection
level. Bit-wise UEP codes are useful when errors in specific
bit positions are more severe, e.g., the most significant bit of
a binary integer or the destination address header of a packet.
A particular bit is then guaranteed to be decoded correctly if
its error protection level is greater than or equal to the total
number of errors in the codeword.

Another type of UEP is error-wise UEP, in which spe-
cific error patterns are guaranteed to be correctable. Error-
wise UEP codes are useful when bit-error locations are not
independent. A code that is designed to correct burst errors
can be thought of as an error-wise UEP code. For ex-
ample, single-error-correcting/double-error-detecting/double-
adjacent-error-correcting (SECDED-DAEC) codes guarantee

correction in the case of a single-bit error or a double-bit error
given that the erroneous bits are adjacent [19], [20]. Error-wise
UEP codes can also be useful when different sections of the
codeword are stored in different chips in computer hardware,
in which case a faulty chip only causes errors on a specific
subsection of the codeword [21], [22].

In this work, we focus on UMP, i.e., message-wise UEP,
in which specific messages have extra protection from errors.
In this setting, Broade et al. used an information-theoretic
approach to prove that it is possible to encode many special
messages, even at rates approaching the channel capacity [23].

Shkel et al. [24] also examined the UMP problem. The
main distinction between their work and ours is their work
is concerned with producing information-theoretic bounds
(achievability and converse) for such codes with average
and maximal error probability over a probabilistic channel.
Shkel et al. followed the line of work considered in Broade
et al., but they also looked at the finite-length regime by
applying the finite blocklength framework from Polyanski et
al. [25] to the UMP setting. Nevertheless, theirs is a different
setting compared to ours: we are interested in adversarial, not
probabilistic, errors and we wish to produce short, explicit
non-randomized code constructions. Additionally, this work is
the first—to the best of our knowledge—to implement UMP
coding schemes in practical memory systems.

Our approach also complements recent research on data
compression in cache and main memory systems, an emerging
topic that aims to meet the energy and storage demands
brought upon by the exponential growth of produced data.
Techniques include frequent value compression [26], frequent
pattern compression [27], and base-delta-immediate compres-
sion [28]. These techniques add considerable complexity and
overhead that may not always be tolerable; they nevertheless
clearly demonstrate that there is a tremendous amount of
correlation and redundancy inherent in the data used in main
memory systems, which we seek to capitalize on, not for
compression, but instead for resilience. This inherent data cor-
relation is a key factor allowing our UMP coding framework
to be innovative and useful.

Our work also relates to past research on joint source/chan-
nel coding. Works in this area observe that although the
source/channel coding separation theorem states that optimally
there is no loss from separately removing redundancy from
a source (source coding) then independently encoding the
resulting output (channel coding), for practical finite-length
codes, the source coding process still leaves some redundancy.
This remaining redundancy, called residual redundancy, which
is intrinsic to the source, can be exploited via channel coding
schemes to improve performance. Such works include those
of Sayood and Borkenhagen [29], Phamdo and Farvardin [30],
and Hagenauer [31], who added a Viterbi-like decoder that
takes advantage of the residual redundancy in lieu of channel
codes. To better handle low error-probability cases, Otu and
Sayood [32] added constraints to the source-coder output,
further increasing the residual redundancy.

A number of such papers are concerned with the variable-
length code (VLC) setting commonly used in source coding.
Papers that focus on memoryless sources include [33], while
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other more recent works focus on the first-order Markov
sources, using trellis decoding to take advantage of residual
redundancy for error-correction [34], [35]. The source model
is extended to Markov Random Fields (MRFs) in [36]. More
recent efforts along these lines include Jiang et al., where
machine learning methods and the inherent redundancy in
language-based sources are used to improve the rate of Polar
codes and the performance of LDPC codes for non-volatile
memories, [37], [38], [39].

There are several significant differences between our UMP
approach and residual redundancy approaches. Such works
typically employ and modify a source coder, while our
approach does not involve source coding at all. Residual
redundancy codes either replace channel coding entirely, or
else use it in complement with iterative schemes to exploit
the residual redundancy. Our strategy is to modify the extant
channel code; we are particularly concerned with systems that
employ fast, simple codes, where an expensive iterative joint
source/channel coding scheme would not be practical.

Finally, UMP is related to the red alert problem, in which
a specific message not only requires a small probability of
missed detection, but also a small probability of false alarm
[40]. In this work, we are not concerned with mitigating false
alarms of our special messages.

II. PRELIMINARIES

A code C is a subset of {0, 1, . . . , q−1}n, where q ≥ 2 is the
alphabet size and n is the code length. We set M = |C| to be
the cardinality of the code. As usual, for linear block codes the
parameter k is the code dimension (so that M = qk messages
can be represented). Code C has minimum distance d if d =
minx,y∈C,x6=y dH(x,y), where dH is the Hamming distance.
If C has minimum distance d, it can correct t = b(d− 1)/2c
errors. We use the standard (n, k, d) notation to denote code
length, dimension, and minimum distance parameters. We use
d(C) as shorthand for the minimum distance of C. In this paper,
logarithms are base 2. When dealing with cyclic codes, let α be
a primitive element in GF(2p), p ≥ 1, where the code length
is n = 2p − 1, and let φi(x) be the minimum polynomial of
αi.

When discussing the inputs and outputs to a channel, let
m be the original message, c be the transmitted codeword, c̄
be the received (possibly erroneous) vector, ĉ be the decoded
codeword, and m̂ be the final de-mapped message. Let ei
represent the error-locator vector with 0’s at every index except
index i, which has a value of 1. We use the notation H(i, j) to
refer to the element on the ith row and jth column of matrix
H (and H(:, j) to refer to the jth column of H).

We partition the M codewords into the sets Mi, where the
codewords in Mi have the property that they are guaranteed
to be correctable in the presence of up to (and not necessarily
more than) i errors. Additionally let Mi = |Mi|. The values
of i will depend on the code at hand. For example, the UMP
alternative to the extended Hamming code partitions the M
codewords into the sets M1 and M2, in such a way that M2

is maximized.
The basic approach in our UMP constructions involves the

use of subcodes, in which every codeword in the subcode—

the special codewords—is a member of a larger, overall code.
All codewords not in the subcode are considered to be the
normal codewords. There are two key points worth noting
about the code design. First, the overall code should not be a
perfect code, i.e., there should be received (erroneous) vectors
that are not inside the Hamming sphere of any codewords.
This allows us to increase the Hamming spheres around our
special codewords in order to capture these erroneous vectors.
For example, if our overall code is a Hamming code—a
perfect code—then increasing the Hamming spheres around
any choice of special codewords would necessarily eliminate
the single-error-correction guarantees of some of the normal
codewords. However, the extended Hamming code is thus a
quasi-perfect code and is a suitable choice for the overall
code. Second, the subcode property of our coding framework
must be designed at the generator matrix as opposed to the
parity-check matrix. With the subcode structure explicitly
represented in the generator matrix, we can encode our choice
of special messages in a straightforward manner. Narrow-
sense BCH codes are nested (have subcodes that are also
BCH codes); however, the subcode structure is traditionally
explicitly embedded in the parity-check matrix.

As an initial upper bound on the number of special code-
words for our UMP parameters, we use the sphere-packing
bound (also known as the Hamming bound). For a code C,
the sphere-packing bound can be written as

|C| ≤ qn∑t
`=0

(
n
`

)
(q − 1)`

.

For our purposes, we rewrite the sphere-packing bound by
splitting up C into the different classes of codewords,

|C| =
∑
j

Mj ,

thus yielding our modified sphere-packing bound:

∑
j:Mj 6=∅

Mj

j∑
`=0

(
n

`

)
(q − 1)` ≤ qn.

Depending on the code at hand, we fix n, k, and the desired
codeword partitions, in order to derive an upper bound on the
number of special codewords. However, the sphere-packing
bound bound is naı̈ve in the sense that it does not take into
account the geometry of the codespace. In Section V, we
derive a more sophisticated bound building upon Delsarte’s
linear programming bound [41]. Additionally, using the same
rationale for a lower bound on the number of special code-
words produces a modified Gilbert-Varshamov bound [42] as
follows. Let us say we are focusing on class Mi and that we
wish to have Mj = αjMi for j 6= i be the relative sizing
for our desired partition. Then, the optimal size of Mi that
satisfies this partition is lower bounded as

Mi ≥

⌊
qn∑

j 6=i αj

∑2j
`=0

(
n
`

)
(q − 1)` +

∑2i
`=0

(
n
`

)
(q − 1)`

⌋
.

Once again, this bound is loose since it does not take into
account the geometry of the codespace.
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III. PARITY CHECK UMP ALTERNATIVE: (SM)SEC

A. Basic Properties

The single-bit parity-check code is a simple code that
ensures every codeword has even weight. As a result, the
minimum distance of the code is 2 and any single-bit error
is detectable. A single-bit parity-check code is often system-
atic, but it can also be employed as the equivalent cyclic
redundancy check CRC-1 code. In our UMP alternative, we
give up single-error-detection for special message single-error-
correction: (sm)SEC. We partition the M codewords into the
sets M0 and M1. Note that the codewords in M0 are still
uniquely decodable in the presence of no errors, i.e., the code
mapping is injective.

Definition 1. A (k + 1, k) (sm)SEC code is a code whose
codewords are partitioned intoM0 andM1 with the following
minimum distance properties:

min
x,y∈M0,x6=y

dH(x,y) ≥ 1, (1)

min
x∈M0,y∈M1

dH(x,y) ≥ 2, (2)

min
x,y∈M1,x6=y

dH(x,y) ≥ 3. (3)

As an initial example, let us examine the codewords of
the linear (5, 4) single-bit parity-check code. We partition the
codewords to transform this single-error-detection code into
an (sm)SEC code. Note that the codewords themselves are the
same; the partition is simply equivalent to a new decoding
procedure.

Example 1. C =M0 ∪M1 is an (5, 4) (sm)SEC code:

M0 = {(00011), (00101), (00110), (01001),
(01010), (01100), (01111), (10001),

(10010), (10100), (10111), (11000),

(11011), (11101)},
M1 = {(00000), (11110)}.

Note that the partition in the above example meets the mini-
mum distance requirements for a (sm)SEC code. Any received
vector that is Hamming distance 1 away from a codeword in
M1 will be decoded to that codeword. The expansion of the
Hamming spheres around the special codewords eliminates
the single-error detection guarantee for codewords in M0;
however, note that detection is still possible in many cases,
just not guaranteed for all cases. For example, an error is
detected if the transmitted and received words are c = (00011)
and c̄ = (00111). Additionally, note that there is no possible
partition of the (5, 4) single-bit parity-check code that results
in an (sm)SEC code with M1 > 2, i.e., in Example 1,
there is no combination of three or more codewords for
M1 that would satisfy Conditions 1-3. The previous fact can
be shown by individually eliminating all possible codeword
weight trios for M1 as being able to satisfy Condition 3.
However, the following example demonstrates that we can
construct a nonlinear code that has a higher number of special
codewords.

Example 2. C =M0 ∪M1 is a (5, 4) (sm)SEC code:

M0 = {(11010), (11001), (10110), (10101),
(01110), (01101), (10011), (01011),

(10010), (01010), (10001), (01001), (11111)},
M1 = {(00000), (11100), (00111)}.

To arrive at an initial upper bound on the number of possible
special messages in a (sm)SEC code, we use the sphere-
packing bound as follows (|Bi| is the size of a Hamming
sphere with radius i):

M0|B0|+M1|B1| ≤ 2n

=⇒ (2k −M1) +M1(n+ 1) ≤ 2n

=⇒ (2k −M1) +M1(k + 2) ≤ 2k+1

=⇒ M1 ≤
2k

k + 1
. (4)

A comparison between the sphere-packing bound and our code
constructions is provided later in Table I.

B. Explicit Construction
Assume our message size, k, is a power of 2. The general

strategy for this construction will be to use a shortened
version of the extended Hamming code as the subcode of
a single-bit parity-check code. Essentially, we are replacing
some of the rows of the generator matrix for the single-bit
parity-check code with those from a Hamming code, so that
the submatrix and overall matrix have the desired minimum
distance properties.

We begin the construction of our (k+1, k) (sm)SEC code by
first creating the generator matrix for the smallest Hamming
code whose dimension is larger than k. A Hamming code
has the parameters (2r, 2r − 1), where r is the redundancy in
bits. In our scenario, k is a power of 2, so we can convert the
Hamming code parameters to be in terms of k. We set 2k = 2r,
yielding r = log(k)+1. Thus, the Hamming code we seek has
parameters (2k−1, 2k−log(k)−2). Let φi(x) be the minimum
polynomial of αi, where α is a primitive element of GF(2k).
The generator polynomial for the associated Hamming code
is simply g1(x) = φ1(x). Let G′

1 be the generator matrix
whose rows are formed, as is usual with cyclic codes, by cyclic
shifts of the coefficients of the generator polynomial. (Any
valid Hamming code generator polynomial could be used to
generate G′

1, but we use choose g1(x) = φ1(x) in order to be
explicit in our construction.)

Throughout this paper, we will use the notation presented
in [43] to illustrate the generator matrix of a cyclic code.
Specifically, if the generator polynomial has the form g(x) =
g0 + g1x+ · · ·+ grx

r, then we represent the generator matrix
as

G =


g0 g1 g2 . . . gr 0

g0 g1 . . . gr−1 gr
. . . . . .

0 g0 . . . . . . gr



=


g(x)

xg(x)
. . .

xn−r−1g(x)

 .
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We now shorten G′
1 from a (2k − log(k)− 2)× (2k − 1)

matrix to a (k− log(k)− 1)× k matrix. This is accomplished
by removing the bottom k − 1 rows and the right k − 1
columns, respectively, yielding the following generator matrix
for a shortened Hamming code:

G1 =


g1(x)

xg1(x)
x2g1(x)

. . .
xk−log(k)−2g1(x)

 .
(5)

Now we turn our attention to the overall code. We will
add an overall parity-bit at a later step, so the generating
polynomial for the remaining rows is simply the identity
function. At this stage, the remaining rows of the overall code
are represented by

G0 =


xk−log(k)−1

xk−log(k)

xk−log(k)+1

. . .
xk−1

 .
(6)

Let C1 and C0 be the codes represented by G1 and G0,
respectively. At this point, we have d(C1) = 3 and d(C0) =
1, thus the addition of an overall parity bit increases each
minimum distance by 1. Our final generator matrix for our
(sm)SEC code is simply a vertical concatenation of matrices
G1 and G0, extended with an overall parity bit. Each row
of G1 has odd weight due to the properties of the minimum
polynomial g1(x) = φ1(x), and each row of G0 has odd
weight since each row is simply a monomial. Thus, the parity
bit at the end of each row is always a ‘1’.

Construction 1. With G1 and G0 defined in (5) and (6),
respectively, we define the overall generator matrix:

G =

[
G0 1
G1 1

]
.

Here and elsewhere in the paper, 1 represents a column
vector of all 1’s, of appropriate dimension dictated by the
number of rows of the submatrix it is appended to. We place
G0 above G1 so that the special mapping, explored further
in Section VI, is more convenient.

Theorem 1. Let M1 be the set of codewords corresponding
to the set of messages that begin with log(k)+1 0’s. Then, G,
from Construction 1, is the generator matrix for a (k + 1, k)
(sm)SEC code.

Proof: We prove that the three conditions in Definition 1
are satisfied when the special messages are those that begin
with log(k) + 1 0’s.

For special messages, any non-zero bits are entirely con-
tained in the part of the message that multiplies [G1|1] in
the encoding step. Since G1 is the generator matrix for a
shortened Hamming code, Condition 3 is trivially satisfied.

For Condition 1 to be true, we need each of the 2k messages
to be encoded into unique codewords, i.e., if m1G = c
and m2G = c, then m1 = m2. For this property to hold,
we simply need the rows of G to be linearly independent.
Individually, it is evident that G0 and G1 each have linearly
independent rows. Let G̃ denote G without the final column of
1’s. Note that G0 can be expressed as [0|I], where the identity
matrix I has dimensions (log(k) + 1) × (log(k) + 1). Thus,
to show that G̃ has linearly independent rows, it is sufficient
to show that no linear combination of rows in G1 results in
a vector whose weights are entirely in the final log(k) + 1
bits. For a (k+1, k) (sm)SEC code, the generator polynomial
in G1 is written as g1(x) = φ1(x) = 1 + x + x(log(k)+1).
Since each row is a cyclic shift of g1(x), any combination of
rows necessarily contains weights that span at least log(k)+2
bits. Condition 1 is satisfied since G̃ has linearly independent
rows (the addition of the final 1’s column does not affect this
property).

A generator matrix in which each row has even weight
produces a code in which all codewords have even weight.
Condition 1 being true implies that distinct messages are
encoded into distinct codewords, hence Condition 2 also holds
since each row in G has even weight.

Corollary 1. Using G from Construction 1 with the mapping
from Theorem 1, there are 2k−(log(k)+1) special messages, i.e.,
M1 = 2k−(log(k)+1).

In order to gauge the number of special messages of an
(sm)SEC code, we introduce the following definition.

Definition 2. An (sm)SEC code, with M1 special messages, is
bitwise optimal if there does not exist an (sm)SEC code with

2dlog(M1)e+1

or more special messages.

Comparing Corollary 1 to the sphere-packing bound in
Equation (4), we arrive at the following result concerning the
optimality of our (sm)SEC construction.

Corollary 2. The code in Construction 1 is a bitwise optimal
(sm)SEC code.

Proof: We calculate the difference between the maximum
number of information bits for M1 from the sphere-packing
bound and the number of information bits for M1 in our
construction as follows:

log

(
2k

k + 1

)
− log

(
2k−(log(k)+1)

)
= k − log(k + 1)− (k − log(k)− 1)

= log

(
k

k + 1

)
+ 1 < 1,

for positive values of k.
As a concrete example, let us briefly walk through the

construction of the (33, 32) (sm)SEC code. We first construct
the cyclic generator matrix for the (63, 57) Hamming code. Let
α be a primitive element of GF(26) such that 1+x+x6 = 0,
then our generator polynomial is simply g1(x) = φ1(x) =
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1 + x + x6. We create the matrix G1 and then shorten the
code to (32, 26). Above it we add a 6 × 6 identity matrix,
padded on the left with 0’s, i.e., we concatenate 06×2616×6

on top of G1. Lastly, we add a column of 1’s.

C. Decoding

The decoding process for a (sm)SEC code is relatively sim-
ple. A slight caveat is that the overall code is not systematic.
Thus, to retrieve m̂ from ĉ requires a de-mapping, which
is accomplished by using the right pseudo-inverse of G as
follows: ĉG−1 = m̂.

The cyclic construction of G1 was helpful for the proof
of Theorem 1, but in practice we convert G1 to a systematic
form by using elementary row operations, and easily obtain
the corresponding parity-check matrix H1. Note that we don’t
need an overall H since the overall code is simply a single-bit
parity check.

There are three possible events in the decoding process.
First, if the received vector c̄ has even weight, then it is a
valid codeword and we declare ĉ = c̄. Second, if the syndrome
s1 = H1c̄

T is equal to column j in H1, then we flip the jth
bit in c̄, i.e., ĉ = c̄ + ej , similar to how syndrome decoding
is performed on Hamming codes. Lastly, if s1 is nonzero and
is not equal to a column in H1, then we declare a DUE, i.e.,
there was no special message reachable from an erroneous
vector with a single bit-flip. This final outcome occurs when
a normal codeword is transmitted, a single-bit error occurs,
and there is no special codeword within a Hamming distance
of 2 from the original codeword. The following steps provide
a concise summary of the decoding process for a (sm)SEC
code:

Algorithm 1 Decoding algorithm for the (sm)SEC code
if wt(c̄) = 0 (mod 2) then

ĉ← c̄
else if s1 = H1(:, j) then

ĉ← c̄+ ej
else

Declare DUE
end if

D. SED-(sm)SEC

Recall that for the (sm)SEC code we give up the single-
error detection guarantee. This loss in protection might cause
the trade-off to be undesirable for certain systems. However,
we can extend the (sm)SEC code by a single redundancy bit in
order to guarantee SED for normal codewords. The minimum
distance requirements for SED-(sm)SEC are as follows.

Definition 3. A (k+2, k) SED-(sm)SEC code is a code whose
codewords are partitioned intoM0 andM1 with the following
minimum distance properties:

min
x,y∈M0,x6=y

dH(x,y) ≥ 2, (7)

min
x∈M0,y∈M1

dH(x,y) ≥ 3, (8)

min
x,y∈M1,x6=y

dH(x,y) ≥ 3. (9)

Using Construction 1, from the previous subsection, we
meet the above requirements with the addition of a single bit
that takes the value of 1 for normal messages and a value
of 0 for special messages. The redundancy bit is simple to
implement as it is just the logical NOR of the first log2(k)+1
bits in the message.

Comparing Definitions 1 and 3, notice that the requirements
from Conditions (1) and (2) increase by 1 while the require-
ment from Condition (3) remains the same. With the addition
of the nonlinear redundancy bit, it is obvious that any code
satisfying (2) now satisfies (8). While the nonlinear parity
bit does not affect (1), our (sm)SEC code from the previous
subsection already satisfies (7) as it is an even weight code.

The sphere-packing bound requires modification to be ap-
plicable to the SED-(sm)SEC. Each special codeword still has
(n+1) n-dimensional points within its Hamming sphere. How-
ever, each point at distance 1 away from a normal codeword
is at distance 1 away from at most n normal codewords. Each
of these points can be thought of as being shared by at most n
normal codewords. Thus, each normal codeword has a claim to
at least (1/n)n = 1 points (not including itself). Our modified
sphere-packing bound is as follows:

2M0 + (n+ 1)M1 ≤ 2n

=⇒ 2(2k −M1) +M1(k + 3) ≤ 2k+2

=⇒ M1 ≤
2k+1

k + 1
. (10)

The decoding process is slightly more involved than that of
the (sm)SEC code. Let c̄ represent the received codeword, not
including the nonlinear redundancy bit, and let η represent the
value of that bit. Again, let s1 = HT

1 c̄. As in the case prior,
if the received codeword has even weight, then we assume
no errors have occurred. Similar to before, but with an extra
condition, if η = 0 and s1 = H1(:, j), then the received
codeword is reachable from a special codeword with a single-
bit error, thus we set ĉ = c̄+ ej . However, the addition of η
allows us to detect single-bit errors from normal codewords.
For example, a single-bit flip on a normal codeword guarantees
either that η = 1 and s1 = H1(:, j), or that η = 0 and
s1 6= H1(:, j). The SED-(sm)SEC decoding process is as
follows:

Algorithm 2 Decoding algorithm for the SED-(sm)SEC code
if wt(c̄) = 0 (mod 2) then

ĉ← c̄
else if η = 0 and s1 = H1(:, j) then

ĉ← c̄+ ej
else

Declare DUE
end if

Even though for decoding purposes it is useful to view the
nonlinear redundancy bit in a unique light, it is not given a
special channel and it is susceptible to a bit-flip in the same
manner as any other bit in the codeword.
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IV. HAMMING CODE UMP ALTERNATIVE: SEC-(SM)DEC

The extended Hamming code is a single-error-
correcting/double-error-detecting (SECDED) code. We
give up the universal DED guarantee in favor of granting
special codewords double-error-correction (DEC). We thus
partition the M codewords into the setsM1 andM2. We call
such a code a SEC-(sm)DEC (single-error-correcting/special-
message-double-error-correcting) code. It is convenient to
formally define the code in terms of the minimum Hamming
distances between pairs of codewords.

Definition 4. A SEC-(sm)DEC code is a code whose code-
words are partitioned into M1 and M2 with the following
minimum distance properties:

min
x,y∈M1,x6=y

dH(x,y) ≥ 3, (11)

min
x∈M1,y∈M2

dH(x,y) ≥ 4, (12)

min
x,y∈M2,x6=y

dH(x,y) ≥ 5. (13)

We present the following simple example; we use the same
codewords from the (8, 4) extended Hamming code, but we
consider the Hamming sphere around the all-1’s codeword and
the all-0’s codeword to have radius 2.

Example 3. C =M1 ∪M2 is an (8, 4) SEC-(sm)DEC code:

M1 = {(11100001), (10011001), (01010101), (00101101),
(00110011), (01001011), (10000111), (01111000),

(10110100), (11001100), (11010010), (10101010),

(01100110), (00011110)},
M2 = {(00000000), (11111111)}.

Our objective is to fully partition the code into the setsM1

and M2 and maximize M2. That is, we require that every
codeword is correctable given a single error, and we seek to
maximize the number of codewords that are correctable in the
presence of up to two errors.

To arrive at an upper bound on the number of possible
special messages we use the sphere-packing bound as follows:

M1|B1|+M2|B2| ≤ 2n

=⇒ (2k −M2)
1∑

j=0

(
n

j

)
+M2

2∑
j=0

(
n

j

)
≤ 2n

=⇒ M2 ≤
2n − 2k(n+ 1)(

n
2

) .

(14)

The resulting bound is intuitive: there are 2n − 2k(n + 1)
points outside of the radius-1 Hamming spheres, which can
become radius-2 Hamming spheres with the addition of

(
n
2

)
points. While the SEC-(sm)DEC code is meant as a direct
alternative to the SECDED code, the above bound makes sense
for any code with parameters (n, k) with a redundancy level in
between the respective Hamming code and t = 2 BCH code.

A. Explicit Construction

Once again, we assume our message length, k, is a power of
2. Thus, our SEC-(sm)DEC code has parameters (k+log(k)+
2, k). We take a similar approach to the (sm)SEC construction,
but here the subcode is an extended t = 2 BCH code and the
overall code is an extended Hamming code.

We first begin by creating the narrow-sense t = 2 BCH code
with parameters (2k−1, 2k−2 log(k)−3). The generator poly-
nomial for the BCH code is g2(x) = LCM{φ1(x), φ3(x)},
used to generate G′

2.
Similarly to the previous case, we shorten G′

2 from a (2k−
2 log(k)− 3)× (2k − 1) matrix to a (k − log(k)− 1)× (k +
log(k) + 1) matrix. This is accomplished by removing the
bottom k − log(k) − 2 rows and the right k − log(k) − 2
columns, respectively, yielding the following generator matrix
for a shortened BCH code:

G2 =


g2(x)

xg2(x)
x2g2(x)

. . .
xk−log(k)−2g2(x)

 .
(15)

We build the additional log(k) + 1 rows using g1(x) =
φ1(x), the generator polynomial for the corresponding Ham-
ming code:

G1 =


xk−log(k)−1g1(x)

xk−log(k)g1(x)
. . .

xk−1g1(x)

 .
(16)

We combine the matrices as before:

Construction 2. With G2 and G1 defined in (15) and (16),
respectively, we define the overall generator matrix:

G =

[
G1 1
G2 1

]
.

An example of Construction 2 is shown in Figure 1, with
G2 converted to systematic form for easier usage in practical
systems. As with the (sm)SEC case, we have the following
theorem and lemma.

Theorem 2. Let M2 be the set of codewords corresponding
to the set of messages that begin with log(k) + 1 0’s. Then,
G, from Construction 2, is the generator matrix for a (k +
log(k) + 2, k) SEC-(sm)DEC code.

Proof: Similarly to the proof of Theorem 1, we need to
prove that the conditions in Definition 4 are satisfied when
the special messages are those that begin with log(k) + 1 0’s.
Since G2 is the generator matrix of a shortened t = 2 BCH
code, it is trivially true that Condition 13 is true.

Once again, let G̃ denote G without the final column of 1’s.
Recall that g1(x) = φ1(x) and g2(x) = LCM{φ1(x)φ3(x)}.
Since φ1(x) and φ3(x) are irreducible and distinct, we have
g2(x) = φ1(x)φ3(x). Thus, a vector is a codeword of G̃
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𝑮 =
𝑮𝟐

𝑮𝟏

Fig. 1. The generator matrix G for our (39, 32) SEC-(sm)DEC code. The
white and black squares represent 1s and 0s, respectively. Note that G2 has
been converted to systematic form.

(in polynomial form) if and only if it is divisible by φ1(x);
hence, G̃ is the generator matrix for a shortened Hamming
code with minimum distance 3 and Condition 11 is satisfied.
The addition of the column of 1’s makes every row have even
weight, and thus Condition 12 is also true.

Corollary 3. Using G with the mapping from Theo-
rem 2, there are 2k−(log(k)+1) special messages, i.e., M2 =
2k−(log(k)+1).

B. Decoding

As with the previous code, we focus on decoding ĉ from
the received vector c̄; an additional de-mapping step with the
pseudo-inverse of G is required to arrive at m̂. We convert
[G2|1] into systematic form, using elementary row operations,
to easily retrieve the associated parity-check matrix, H2.
Additionally, we convert G into systematic form to retrieve
the overall parity-check matrix H . Note that converting G to
systematic form destroys the explicit subcode partition in G;
however, as shown in Algorithm 3, the parity-check matrix
H is used to correct single-bit errors (decoding to a normal
or special codeword), while H2 is used to correct double-bit
errors (decoding only to a special codeword).

Let s = HT c̄ and s2 = HT
2 c̄. The following pseudocode

outlines the logical flow of the decoding process.

Algorithm 3 Decoding algorithm for the SEC-(sm)DEC code
if s = 0 then

ĉ← c̄
else if s = H(:, j) then

ĉ← c̄+ ej
else if s2 = H2(:, j) +H2(:, i) then

ĉ← c̄+ ej + ei
else

Declare DUE
end if

The process above outlines the correct order of steps in the
decoding process. There are a variety of physical implemen-

tations and algorithms to choose from for the BCH decoding
process for the step involving H2.

C. SECDED-(sm)DEC

As in Section III-D, we can use an additional nonlinear
parity bit to create a code strictly better than the base code,
i.e., not giving up the double-error detection guarantee for
any codewords. The minimum distance requirements for the
SECSED-(sm)DEC code are as follows.

Definition 5. A (k + log(k) + 3, k) SECDED-(sm)DEC code
is a code whose codewords are partitioned into M1 and M2

with the following minimum distance properties:

min
x,y∈M1,x6=y

dH(x,y) ≥ 4, (17)

min
x∈M1,y∈M2

dH(x,y) ≥ 5, (18)

min
x,y∈M2,x 6=y

dH(x,y) ≥ 5. (19)

Using Construction 2, we meet the above requirements with
the addition of a single bit, which we denote as η, that takes
the value of 1 for normal messages and a value of 0 for
special messages. As before, the redundancy bit is simple to
implement as it is just the logical NOR of the first log2(k)+1
bits in the message. The nonlinear parity-bit affects only the
distances between normal and special codewords, thus only
Condition 18 is different than before; Conditions 17 and 19
were already satisfied by our original Construction 2. The
decoding procedure is very similar to Algorithm 3.

Algorithm 4 Decoding algorithm for the SECDED-(sm)DEC
code

if s = 0 then
ĉ← c̄

else if s = H(:, j) then
ĉ← c̄+ ej

else if η = 0 and s2 = H2(:, j) +H2(:, i) then
ĉ← c̄+ ej + ei

else
Declare DUE

end if

Using the above decoding algorithm, the SECDED-
(sm)DEC protection properties of the code still hold even if η
is one of the bits in error.

V. UPPER BOUND ON SPECIAL CODEWORDS

We first recap our current results with Table I, which
compares the number of special messages for our constructions
with their respective sphere-packing bounds. Each row is
indexed by a value of k, and the second column represents
the results from Corollaries 1 and 3. The third column helps
to demonstrate Corollary 2, that the (sm)SEC code is bitwise
optimal.

For traditional codes, the sphere-packing bound is not
the tightest upper bound available in either the finite-length
or asymptotic regimes. A better bound is provided in both
cases by Delsarte’s linear programming (LP) bound [41].
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TABLE I
SPECIAL MESSAGES (MEASURED IN BITS)

Sphere-Packing Bound

Message Bits (k) Constructions 1 & 2 (k+ 1, k) (sm)SEC (k+ 2, k) SED-(sm)SEC (k+ log (k) + 2, k) SEC-(sm)DEC
4 1 1.68 2.68 2
8 4 4.83 5.83 5.88
16 11 11.91 12.91 13.51
32 26 26.96 27.96 28.93
64 57 57.98 58.98 60.20

The LP bound considers the distance distribution vector
g = (g0, g1, g2, . . . , gn), where

gi = |{(x,y) : x,y ∈ C, dH(x,y) = i}|/|C|.

All values of gi are nonnegative, g0 = 1, and gi = 0 for
1 ≤ i < dmin. The remaining condition in the LP bound is
gQ ≥ 0, where Q is the so-called second eigenmatrix of the
Hamming association scheme on Fn

2 . Delsarte showed that
Q can be formed by the relation Qi,j = Kj(i), with the
Krawtchouk polynomial defined as

Kk(x) =
k∑

j=0

(−1)j
(
x

j

)(
n− x
k − j

)
. (20)

Clearly, we have that
∑n

i=0 gi = |C|, and thus maximizing∑n
i=0 gi also maximizes the size of the code.
We are ready to introduce our modified programming bound

for UMP codes that are partitioned into two classes of code-
words. The core idea is to use multiple distance distribution
vectors to represent the distances within and between code-
word partitions.

Theorem 3. Let C be a binary code whose codewords are
partitioned into normal codewords,N , and special codewords,
S, with the following minimum distance properties:

min
x,y∈N ,x6=y

dH(x,y) ≥ D1, (21)

min
x∈N ,y∈S

dH(x,y) ≥ D2, (22)

min
x,y∈S,x6=y

dH(x,y) ≥ D3. (23)

We define distance distribution vectors a,b, and c to contain
distances between two normal codewords, one normal code-
word and one special codeword, and two special codewords,
respectively:

ai = |{(x,y) : x,y ∈ N , dH(x,y) = i}|/|C|,
bi = |{(x,y) : x ∈ N ,y ∈ S or

x ∈ S,y ∈ N , dH(x,y) = i}|/|C|,
ci = |{(x,y) : x,y ∈ S, dH(x,y) = i}|/|C|.

Then, we have

|S| ≤
√
2k
∑n

i=0 c
∗
i ,

where c∗ is the solution to the following nonlinear program:

maximize:
n∑

i=0

ci subject to:

Inequality Constraints Equality Constraints
a ≥ 0, ai = 0, 1 ≤ i ≤ D1 − 1,
b ≥ 0, bi = 0, 0 ≤ i ≤ D2 − 1,
c ≥ 0, ci = 0, 1 ≤ i ≤ D3 − 1,
aQ ≥ 0, a0 + c0 = 1,

cQ ≥ 0,
n∑

i=0

(ai + bi + ci) = 2k,

(a + b + c)Q ≥ 0, 2k(a0)
2 −

n∑
i=0

ai = 0,

2k(c0)
2 −

n∑
i=0

ci = 0.

Proof: This proof largely follows that from Delsarte’s LP
bound [41]; however, due to the multiple distance distribution
vectors, there are a number of substantial differences in the
constraints of our programming bound.

The overall goal of this program is to maximize |S|.
Summing over all the entries in c, we have:

n∑
i=0

ci =
|S|2

|C|
=⇒ |S| =

√√√√2k
n∑

i=0

ci,

and thus, for given n and k, our objective function is to
maximize

∑n
i=0 ci.

We first establish inequality constraints. Note that a, c, and
a + b + c are valid (scaled) distance distribution vectors of
codes. Thus, our first three inequality constraints are aQ ≥ 0,
cQ ≥ 0, and (a + b + c)Q ≥ 0, where Q is the same eigen-
matrix based on the Krawtchouk polynomial in Equation 20.
Similarly to the LP bound, we require all ai, bi and ci to be
nonnegative.

We now establish the equality constraints. We have∑n
i=0 bi =

2|N ||S|
|C| . Thus our total codewords condition is:

n∑
i=0

(ai + bi + ci) =
|N |2 + 2|N ||S|+ |S|2

|C|
=
|C|2

|C|
= 2k.

Due to the minimum Hamming distances in the distribution
vectors, we have ai = 0 for 1 ≤ i ≤ D1 − 1, bi = 0 for
0 ≤ i ≤ D2− 1 and ci = 0 for 1 ≤ i ≤ D3− 1. Additionally,
since a0 = |N |/|C| and c0 = |S|/|C|, we have that a0+c0 = 1.

Unfortunately, while the condition a0+c0 = 1 is necessary,
it is not specific enough to guarantee a solution consistent
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TABLE II
SEC-(SM)DEC UPPER BOUNDS ON log(M2)

(n,k) Sphere-Packing Bound Programming Bound

(14, 8) 7.11 7.00
(15, 8) 8.09 7.99
(23, 16) 14.72 14.56
(24, 16) 15.74 15.56
(25, 16) 16.90 16.00

with our distribution vector definitions. We require an extra
condition on ai and ci, as follows:

a0 =
|N |
2k

=⇒ 2k(a0)
2 −

n∑
i=0

ai = 0,

c0 =
|S|
2k

=⇒ 2k(c0)
2 −

n∑
i=0

ci = 0.

The final two equality constraints are not affine, and thus our
program is no longer a convex optimization. However, given
the smoothness of our quadratic constraints, there are many
efficient optimization techniques for this nonlinear program
(NLP) [44]. The NLP bound correctly returns infeasible solu-
tion for any parameters (n, k) with less redundancy than the
associated Hamming code. Additionally, for any (n, k) with
more redundancy than the associated t = 2 BCH code, the
program correctly returns M2 = 2k. Note that only the first
three equality constraints are dependent on the specific UMP
code. In the special case that D1 = 1, as is the case with the
(sm)SEC code, ai is never forced to be 0 since there are no
values of i that satisfy the constraint 1 ≤ i ≤ D1 − 1 = 0.

Unlike the relationship between Delsarte’s LP bound and the
sphere packing bound, our NLP bound is not always at least
as strong as the analogous sphere packing bound. Our NLP
bound does not improve on the sphere-packing bound when
we use the minimum number of redundancy bits required for
our UMP constructions. However, our NLP bound often results
in tighter bounds with the usage of additional redundancy bits.
For example, with k = 16 message bits, the optimal SECDED
code has parameters (22, 16, 4), and the optimal DEC code
has parameters (26, 16, 5). Codes with lengths in between
these are largely unexplored since the minimum distance of
the code cannot increase from 4 to 5. However, since we are
interested in more than just the overall minimum distance of
the code, it is useful to obtain bounds on the number of special
messages for these code parameters as well. Table II provides
the NLP results for the SEC-(sm)DEC codes with parameters
in between SECDED and DEC for k = 8 and k = 16.

VI. SPECIAL MAPPING STRATEGIES AND RESULTS IN
RANDOM-ACCESS MEMORIES

Now that we have established the code constructions and
bounds, we switch our focus toward their practical usage
in real-life systems. We have designed our UMP codes to
function as a black box—the user does not need to know the
intricate details of the error-correction mechanisms. However,
the user is responsible for a pre-mapping of the messages

that are to be designated special. As stated in Theorems 1
and 2, the messages that will be treated as special, for all
of our UMP codes presented here, are those messages that
start with log(k) + 1 0’s. Thus, the exact method used for
the pre-mapping is dependent on the underlying data and the
desired special messages. In terms of simplicity, the best-case
scenario is that the underlying data is often lead-padded with
0’s so no mapping has to be done (see Table III). The worst-
case scenario is structureless data, in which case a look-up
table would be needed to store a paired list containing the
messages to be deemed special and messages that begin with
log(k) + 1 0’s that we do not wish to be special. However,
data or instructions stored in memory are generally structured,
so we can use clever techniques to specially encode large sets
of messages instead of individually

Data in memory is usually low-magnitude signed or un-
signed data of a certain data type. These low magnitude values
get inefficiently represented by fixed size data type, for e.g., a
4-byte integer type used to represent values that usually need
only 1-byte. This means in most cases the MSBs would be a
leading pad of 0’s or 1’s. Also, frequencies of instructions in
most applications follow a power law distribution [5]; some
instructions are much more frequently accessed than the other
instructions. If the opcode, which primarily determines the
action taken by the instruction for a certain instruction set
architecture (ISA), is for example, the first x bits, then the
relative frequency of the opcodes of the common instructions
are high. Thus, most instructions in the memory would have
the same prefix of x-bits.

We collected dynamic memory access traces of various
benchmarks that were compiled for both the 64-bit and 32-bit
RISC-V instruction sets v2.0 and analyzed them to determine
the most frequent opcodes (in instruction memory) and the
relative frequency of common patterns (in data memory) over
the entire suite; the results are shown in Table III. For both
the 64-bit and 32-bit RISC-V ISAs, the opcode is 7 bits long
and occurs in bit-positions 0-6. We find that the distribution of
opcodes is highly asymmetric—the two most frequent instruc-
tions, LOAD and OP-IMM [45], comprise an average of 51%
and 56% of the instructions in the AxBench [46] and SPEC
CPU2006 suites, respectively. For data memory the majority of
stored vectors begin with a run of 0’s consistently throughout
each benchmark (as demonstrated by the low variance values).

Due to the popularity of (39, 32) SECDED codes in byte-
oriented architectures, we seek a (39, 32) SEC-(sm)DEC cod-
ing framework that efficiently maps special messages of our
choice to special codewords. For a (39, 32) SEC-(sm)DEC
code formed via Construction 2, Lemma 3 yields log(M2) =
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TABLE III
FRACTION OF SPECIAL MESSAGES PER BENCHMARK WITHIN SUITE

32-bit Architecture 64-bit Architecture
Most Freq. 2 opcode First 6 bits are 0 Most Freq. opcodes First 7 bits are 0
(Instruction Memory) (Data Memory) (Instruction Memory) (Data Memory)

Suite Max Mean Max Mean Max Mean Max Mean

AxBench 0.51 0.46 0.92 0.86 0.27 0.26 0.89 0.82
SPEC CPU2006 0.56 0.37 0.99 0.89 0.31 0.22 0.99 0.60

26, i.e., we can have 226 special messages. Given the structure
of the underlying data, there are two natural choices for our
special messages. First, the 32-bit RISC-V ISA is comprised
of 7 bits for the opcode and 25 bits for the rest of the message,
therefore, we are able to offer DEC protection to 2 opcodes
and all of their associated messages. The messages containing
either of the opcodes that we be deemed special would simply
need to be mapped/swapped with 0000000 and 0000001. This
swapping would occur prior to the encoding process, and
once again after the decoding process. An alternative strategy
to focusing opcodes is to focus on data with a leading run
of zeros, since this is a very common pattern. Again, since
we have log(M2) = 26, we can offer full DEC protection
to any message beginning with a run of 0’s of length at
least 32 − 26 = 6 bits. We can apply the same analysis
for the (72, 64) SEC-(sm)DEC code, for which Lemma 3
yields log(M2) = 57. Since 64 − 57 = 7, we can offer DEC
protection to the single most likely opcode (and the associated
messages), or alternatively, to any message whose first 7 bits
are 0’s.

Using the same number of redundancy bits as the SECDED
code, our SEC-(sm)DEC coding scheme offers full DEC pro-
tection to special messages based on a customizable mapping
scheme. Depending on the user goal, our construction could
lead to system-level benefits such as less frequent checkpoints
in supercomputers and decreased risk of catastrophic failure
from erroneous special messages. Our results indicate that the
(39, 32) SEC-(sm)DEC scheme can improve the overall failure
rate (in systems where DUEs are critical) by up to 9x with no
additional redundancy using the leading run of 0’s mapping
technique.

Implementing SEC-(sm)DEC coding would require changes
to the hardware that already supports SECDED. The en-
coding latency and energy when writing to the memory are
almost identical for the two protection schemes. The decod-
ing requires an additional clock cycle for the non-special
messages in the case of SEC-(sm)DEC. This is because for
SEC-(sm)DEC, the first 6-bits of a 32-bit message is non-
systematic. For special messages, this first 6-bits is the special
prefix that is known and hence, the trailing systematic 26-bits
can simply be truncated from the received message when there
is no error and the special prefix can be added to construct the
original message. However, for non-special messages the first
6-bits is not known and hence, the entire received codeword
needs to go through an additional cycle of matrix multiplica-
tion to retrieve the original message, incurring an additional
cycle latency during decoding.

To understand the performance impacts of the proposed

codes and the additional cycle latency due to non-systematic
non-special messages, we evaluated SED-(sm)SEC in last
level cache (LLC) over applications from the SPEC 2006
benchmark suite and compared it against LLC with SECDED
code. The processor is a lightweight single in-order core
architecture with a 32kB L1 cache for instruction and 64kB L1
cache for data. Both the instruction and data caches are 4-way
associative. Since SED-(sm)SEC has 3.5x lower redundancy
storage overhead, for the same area, it allows for a larger
capacity LLC (∼ 10% larger) than SECDED. Hence, for the
system with SED-(sm)SEC protected LLC, the size of the
LLC is 1152kB while the system with SECDED protected
LLC has 1024kB of last level cache. The increased capacity of
LLC results in fewer cache misses during read/write operation
which helps in improving the overall system performance.
For LLC with SED-(sm)SEC, the non-systematic non-special
messages have one extra cycle during read/write operations
from/to the LLC that was taken into consideration for our
simulation.

From the results shown in Figure 2, it can be seen that the
system with SED-(sm)SEC has up to ∼4% better performance
(lower execution time) than the one with SECDED. The
applications showing higher performance benefits are mostly
memory intensive. This is because even though SED-(sm)SEC
has slightly higher average cache access latency (due to the
non-systematic non-special messages), it gets more than offset
by the increased cache hit rate due to the higher LLC capacity
coming from the lower storage overhead of SED-(sm)SEC.

We also evaluated the impact of loss of guaranteed pro-
tection on approximation-tolerant applications. The (sm)SEC
code is expected to correct single-bit errors in special messages
while any single-bit error in non-special messages goes un-
detected and hence un-corrected. The approximation friendly
applications are expected to tolerate most of the single-bit
undetected errors and have minimal (benign) impact on the
output. However, (sm)SEC is expected to result in fewer
crashes/hangs as compared to SED since it has the ability
to correct single-bit flips in special messages. To evaluate this
we used 6 applications from AxBench [46], an approximate
benchmark suite. The AxBench benchmarks were compiled
for the open-source 64-bit RISC-V (RV64G) instruction set
v2.0 [45] using the official tools [47]. Each benchmark was
ran until completion 1000 times on top of the RISC-V proxy
kernel [48] using the Spike simulator [49] that was modified
to produce representative memory access traces.

For each run, a single bit error was randomly injected on
a demand data memory read. In case of non-special messages
in (sm)SEC, the program continued with the wrong message.
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Fig. 2. Comparing Normalized Execution Time of SPEC 2006 benchmarks with SECDED protected and SED-(sm)SEC protected last level caches.

Fig. 3. Output Quality of AxBench benchmarks for memory with SED vs with (sm)SEC.

For SED, even though all single-bit errors were detected, the
program continued with the wrong message instead of crash-
ing immediately since these applications are approximation-
tolerant. From the results shown in Figure 3, it can be seen that
(sm)SEC reduces intolerable Silent Data Corruption (SDC),
that is, an SDC with more than 10% output error, by up to
84.2% (avg. 32.5%). It significantly reduces the number of
crashes/hangs by up to 95.3% (avg. 85.6%). This means with
(sm)SEC the system will have many fewer hangs/crashes in
case of unpredictable single bit flips during runtime.

VII. CONCLUSION

Unequal message protection codes are unique in that they
offer varying protection levels to different messages (as op-
posed to information contained in specific bit positions).
Messages that are appropriate for extra protection include
frequently occurring messages and critical messages. This
UMP framework is an effective alternative to our previously
proposed Software-Defined Error-Correcting Codes, which is
a class of heuristic recovery techniques. Instead of probabilis-
tically decoding from a set of candidate codewords, our UMP

framework allows us to a priori select messages that receive
extra protection and map them to special codewords, ensuring
that no two special messages are confusable given a small
number of bit errors.

In this paper, we explored a novel class of UMP codes along
with potential applications. After establishing the notation, we
provided explicit constructions for four specific UMP codes.
Two of these codes, the (sm)SEC code and the SEC-(sm)DEC
code, provide direct alternatives to two widely used codes—the
single-bit parity-check code and the extended Hamming code,
respectively. The other two codes, the SED-(sm)SEC code
and the SECDED-(sm)DEC code, enable new possibilities
in a previously unexplored redundancy space in which the
additional redundant bit does not provide for an increase
to the overall Hamming distance. In addition to the explicit
constructions, we proved that the (sm)SEC code is bit-wise
optimal and provided both a modified sphere-packing bound as
well as a nonlinear programming upper bound on the number
of special codewords given the UMP code parameters.

Lastly, we conducted extensive simulations of these codes in
real-world benchmarks. With very simple encoding schemes,
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we were able to denote large percentages of real messages
as special in both instruction memory and data memory.
Additionally, these extra protection levels had minimal impact
on the latency while improving overall system resiliency.

There are many paths for future work with UMP codes.
Tighter bounds on the number of special codewords for a
given UMP code parameter set have yet to be discovered.
Additionally, it is likely that similar techniques to those
presented in this paper can be used to construct UMP codes
that have many levels of protection, as opposed to just two.
Future work also non-binary UMP constructions which would
serve as an alternative to Chipkill [22].
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