
US 20210255976A1
M INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0255976 A1

Gottscho et al . (43) Pub . Date : Aug. 19 , 2021

(54) DIRECT MEMORY ACCESS
ARCHITECTURE WITH MULTI - LEVEL
MULTI - STRIDING

(52) U.S. CI .
CPC GO6F 13/28 (2013.01) ; GOOF 1/04

(2013.01)

(71) Applicant : Google LLC , Mountain View , CA (US) (57) ABSTRACT

(72) Inventors : Mark William Gottscho , Redwood
City , CA (US) ; Matthew William
Ashcraft , San Carlos , CA (US) ;
Thomas Norrie , Mountain View , CA
(US) ; Oliver Edward Bowen ,
Redwood City , CA (US)

(21) Appl . No .: 16 / 838,796
(22) Filed : Apr. 2 , 2020

DMA architectures capable of performing multi - level multi
striding and determining multiple memory addresses in
parallel are described . In one aspect , a DMA system includes
one or more hardware DMA threads . Each DMA thread
includes a request generator configured to generate , during
each parallel memory address computation cycle , m
memory addresses for a multi - dimensional tensor in parallel
and , for each memory address , a respective request for a
memory system to perform a memory operation . The request
generator includes m memory address units that each
include a step tracker configured to generate , for each
dimension of the tensor , a respective step index value for the
dimension and , based on the respective step index value , a
respective stride offset value for the dimension . Each
memory address unit includes a memory address computa
tion element configured to generate a memory address for a
tensor element and transmit the request to perform the
memory operation .

Related U.S. Application Data
(60) Provisional application No. 62 / 977,062 , filed on Feb.

14 , 2020 .

Publication Classification

(51) Int . Ci .
GOOF 13/28 (2006.01)

100 oz DMA Thread
120

Source Subthread
130

Memory System
150

124 ? 112 127
Request
Generator

132
Source Memory

152 Descriptor
Queue
122 Progress

Tracker
134 Core

110

Š 115 Destination Subthread
140

Request
Generator

142 116
Destination Memory

154

Progress
Tracker
144

100 %

DMA Thread 120

Patent Application Publication

Source Subthread 130

Memory System 150

124 1247

112 }

Request Generator 132

Source Memory 152

Descriptor Queue 122

Progress Tracker 134

Core 110

1055

Aug. 19 , 2021 Sheet 1 of 9

115

Destination Subthread 140 Request Generator 142

116

Destination Memory 154

Progress Tracker 144

US 2021/0255976 A1

FIG . 1

2007

$ 240 240

260

270

220 5 220

?

230

Descriptor sps_1

Descriptor

Finite State Machine 232

Patent Application Publication

sps_2

Stride Data

Base address

299

sps 3

?

Lane 0 dimension memory address offsets { 0 , 1 , 2 , 3)

2525

210 3

Lane 0

201

Request with lane 0 address

memory offset

12 2422

Step Tracker (Lane 0) 222

+

+

262A

Lane 1 dimension memory address offsets { 0 , 1,2,3 }

2542

262B

Request with lane 1 memory address

Lane 1 memory offset

202

Step Tracker (Lane 1) 224

22 44 Z

+

+

Aug. 19 , 2021 Sheet 2 of 9

244

256

264A

Lane 2 dimension memory address offsets { 0 , 1 , 2 , 3 }

2567

264B

Request with lane 2 memory address

Lane 2 memory offset

2032

Step Tracker (Lane 2) 226

+

+

246

2

266A

Lane 3 dimension memory address offsets { 0 , 1 , 2 , 3)

2587

266B

Request with lane 3 address

Lane 3 memory offset

204

Step Tracker (Lane 3) 228

for

+

US 2021/0255976 A1

248

268A

268B

FIG . 2A

Patent Application Publication Aug. 19 , 2021 Sheet 3 of 9 US 2021/0255976 A1

2802

285

281
282

283 for (int io = 0 ; io < steps_per_stride_0 ; ++ io)
for (int i1 = 0 ; i1 < steps_per_stride_1 ; ++ i1) 284

for (int iz = 0 ; 12 < steps_per_stride_2 ; ++ i2)
for (int i3 = 0 ; i3 < stepts_per_stride_3 ; ++ i3)

dimension_memory_address_offset_O = (io * stride_dimension_offset_value_0) ;
dimension _memory_address_offset_1 = (11 * stride_dimension_offset_value_1) ;
dimension _memory_address_offset_2 = (iz * stride_dimension_offset_value_2) ;
dimension _memory_address_offset_3 = (i3 * stride_dimension_offset_value_3) ;

286
memory address = (base_address +

dimension memory_address_offset_0 +
dimension _memory_address_offset_1 +
dimension _memory_address_offset_2 +
dimension_memory_address_offset_3) ;

FIG . 2B

342

3007

$?? ** ?]

Lane i dimension memory address offset 0

0 0 0

0

Patent Application Publication

Initialization Amount

Step Incrementer Chain for Next DMA Transaction 322

3347

Lane i dimension memory address offset 1

Next Descriptor Stride Parameters

336

Lane i dimension memory address offset 2

Step Incrementer Chain Current DMA Transaction 324

Aug. 19 , 2021 Sheet 4 of 9

Advance Amount Current Descriptor Stride Parameters

Lane i dimension memory address offset 3

1 1

î

Current Values

338

US 2021/0255976 A1

FIG . 3

4007

Advance Amount

Step 3 parameters Step 3 index value
Step 3 dimension offset value

Step Incrementer (3) 410

Step 3 next index value

Step 3 dimension memory address offset value

Patent Application Publication

Wrap Amount

Step 2 parameters Step 2 index value
Step 2 dimension offset value

Step Incrementer (2) 420

Step 2 next index value

Step 2 dimension memory address offset value

Wrap Amount

Step 1 parameters Step 1 index value
Step 1 dimension offset value

Aug. 19 , 2021 Sheet 5 of 9

Step Incrementer (1) 430

Step 1 next index value

Step 1 dimension memory address offset value

Wrap Amount

Step O parameters Step 0 index value
Step O dimension offset value

Step Incrementer (0) 440

Step O next index value

Step O dimension memory address offset value

US 2021/0255976 A1

FIG . 4

Request ID credit return

Patent Application Publication

5003

Response Reorder Unit 520

Responses (out of order) from memory

In order items pop

In order items

Synchronization Unit 530

Aug. 19 , 2021 Sheet 6 of 9

Descriptors

Progress Tracker Queue 510

Synchronization messages

FIG . 5

US 2021/0255976 A1

600]

Pop vector

630

Reorder Vector

Response Vector
610

Head Pointer Logic 650

s

head

Pop Vector Logic 640

6227

Patent Application Publication

Request ID (lane 0)

head plus 1 head plus 2

Request ID (lane 1)

head plus i next

Request ID (lane 2)

624

Internal Pop Count Logic 660

Request ID (lane 3)

Aug. 19 , 2021 Sheet 7 of 9

+

674
]

670

Request ID credit return

In order items

672

US 2021/0255976 A1

In order items pop

FIG . 6

Patent Application Publication Aug. 19 , 2021 Sheet 8 of 9 US 2021/0255976 A1

7007 702 ?
Receive one or more descriptors

5704
Initialize step trackers

706 S
Generate memory addresses

708

Send requests

714 5114 710

Yes More
descriptors ? No More

elements ?
Yes

No

End

FIG . 7

Patent Application Publication Aug. 19 , 2021 Sheet 9 of 9 US 2021/0255976 A1

800

802

Receive one or more responses

5 804 Update reorder vector

806

Yes

8087
Consecutive
elements
threshold ?

Release identifiers
No 810 581

Yes Number of
responses
> threshold ? S 812

No Synchronize
processor core 8147

No All responses
received ?

816 5816 Yes

Synchronize processor core

End

FIG . 8

US 2021/0255976 Al Aug. 19 , 2021
1

DIRECT MEMORY ACCESS
ARCHITECTURE WITH MULTI - LEVEL

MULTI - STRIDING

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit under 35 U.S.C.
$ 119 (e) of U.S. Patent Application No. 62 / 977,062 , entitled
“ Direct Memory Access Architecture with Multi - Level
Multi - Striding , ” filed Feb. 14 , 2020. The disclosure of the
foregoing application is incorporated herein by reference in
its entirety for all purposes .

BACKGROUND

[0002] Direct memory access (DMA) is a capability that
enables devices or subsystems to access memory indepen
dent of the processor . This frees up the processor from
involvement with the data transfer , making the processor
available to perform other operations . DMA can be used to
offload expensive memory operations from the processor ,
such as large memory transfer operations and scatter - gather
operations .

SUMMARY

[0003] This specification describes technologies relating
to DMA architectures that are capable of performing multi
level multi - striding and determining multiple memory
addresses in parallel , e.g. , during a single clock cycle .
[0004] In general , one innovative aspect of the subject
matter described in this specification can be embodied in a
direct memory access (DMA) system that includes one or
more hardware DMA threads . Each DMA thread includes a
request generator configured to generate , during each par
allel memory address computation cycle , (i) m memory
addresses for a multi - dimensional tensor in parallel and , for
each memory address , (ii) a respective request for a memory
system to perform a memory operation for the multi - dimen
sional tensor . The request enerator includes m memory
address units . Each memory address unit includes a step
tracker configured to generate , for each dimension of the
multi - dimensional tensor , (i) a respective step index value
for the dimension and , based on the respective step index
value , (ii) a respective stride offset value for the dimension
and a memory address computation element configured to
generate , during each parallel memory address computation
cycle and based on each respective stride offset value , a
memory address for a tensor element of the multi - dimen
sional tensor and transmit , to the memory system , the
request to perform the memory operation using the memory
address , where m is greater than or equal to one . Other
implementations of this aspect include corresponding appa
ratus and methods .
[0005] These and other implementations can each option
ally include one or more of the following features . In some
aspects , the request generator is configured to generate the
memory addresses in parallel during a single clock cycle and
each parallel memory computation is performed during a
single clock cycle . During each clock cycle , the memory
address computation element of each memory address unit
generates a memory address for a same or different tensor
element than the memory address computation element of
each other memory address unit .

[0006] In some aspects , the request generator is configured
to receive , for the multi - dimensional tensor , a descriptor that
defines , for each dimension , a respective steps for stride
value for the dimension . The request generator can include
m lanes that each include a respective step tracker and a
respective memory address computation element . The
respective step tracker and respective memory address com
putation element of each lane computes a corresponding
memory address in parallel with each other lane . The step
trackers can be configured to generate the memory addresses
for the multi - dimensional tensor based on a loop nest that
includes , for each dimension of the multi - dimensional ten
sor , a respective loop for traversing the dimension of the
multi - dimensional tensor . The steps per stride value for each
dimension represents a loop bound for the respective loop
for the dimension and the step index value for each dimen
sion represents a loop index for the respective loop for the
dimension .
[0007] In some aspects , each step tracker is configured to
update the step index value for each of the dimensions
during each clock cycle . A combination of the step index
values for each step tracker can be different from a combi
nation of the step index values for each other step tracker .
Each step tracker can include a step incrementer chain that
includes multiple step incrementers each configured to
determine a dimension memory address offset value for a
respective dimension . A first step incrementer of the step
incrementer chain corresponding to an innermost loop of the
loop nest can be configured to receive an advance amount .
Updating the step index value for one or more of the
dimensions during each clock cycle can include updating , by
the first step incrementer , the step index value for the one or
more dimensions based on the advance amount .
[0008] In some aspects , each of one or more second step
incrementers of the step incrementer chain corresponding to
a loop in which the innermost loop is nested is configured to
receive , from a previous step tracker in the step incrementer
chain , a wrap amount . Updating the step index value for one
or more of the dimensions during each clock cycle can
include updating , by the second step incrementer , the step
index value for the one or more dimensions based on the
wrap amount .
[0009] Some aspects can include a progress tracker that
includes a response reorder unit and a synchronization unit .
The response reorder unit can be configured to maintain , for
each tensor , a status of whether a memory operation for the
tensor element has been performed . The synchronization
unit can be configured to provide , to a processor core ,
multiple partial updates that each specify an overall status of
memory operations performed on the tensor elements of the
multi - dimensional tensor .
[0010] In some aspects , each request includes a unique
identifier . The response reorder unit can be configured to
receive responses from the memory system in any order .
Each response can include the unique identifier of the
request for which the response is provided . The response
reorder unit can be configured to release a set of unique
identifiers for re - use by the request generator when at least
a threshold number of consecutive unique identifiers are
received in the responses .
[0011] In general , another innovative aspect of the subject
matter described in this specification can be embodied in a
system that includes one or more processor cores , a memory
system , and a DMA engine that includes one or more DMA

US 2021/0255976 A1 Aug. 19 , 2021
2

threads . Each DMA thread can include a request generator
configured to generate , during each parallel memory address
computation cycle , (i) m memory addresses for a multi
dimensional tensor in parallel and , for each memory address ,
(ii) a respective request for a memory system to perform a
memory operation for the multi - dimensional tensor , wherein
the request generator comprises m memory address units ,
where m is greater than or equal to one . Each memory
address unit can include a step tracker configured to gener
ate , for each dimension of the multi - dimensional tensor , (i)
a respective step index value for the dimension and , based
on the respective step index value , (ii) a respective stride
offset value for the dimension and a memory address com
putation element configured to generate , during each parallel
memory address computation cycle and based on each
respective stride offset value , a memory address for a tensor
element of the multi - dimensional tensor and transmit , to the
memory system , the request to perform the memory opera
tion using the memory address . Each DMA thread can
include a progress tracker that includes a response reorder
unit and a synchronization update unit configured to pro
vide , to the one or more processor core , partial synchroni
zation updates for memory operations managed by the DMA
engine . Other implementations of this aspect include corre
sponding apparatus and methods .
[0012] These and other implementations can each option
ally include one or more of the following features . In some
aspects , the request generator is configured to generate the
memory addresses in parallel during a single clock cycle and
each parallel memory computation is performed during a
single clock cycle .
[0013] During each clock cycle , the memory address com
putation element of each memory address unit can generate
a memory address for a same or different tensor element than
the memory address computation element of each other
memory address unit . The request generator can be config
ured to receive , for the multi - dimensional tensor , a descrip
tor that defines , for each dimension , a respective steps for
stride value for the dimension . The request generator can
include m lanes that each include a respective step tracker
and a respective memory address computation element ,
wherein the respective step tracker and respective memory
address computation element of each lane computes a cor
responding memory address in parallel with each other lane .
[0014] In general , another innovative aspect of the subject
matter described in this specification can be embodied in a
method performed by a DMA system . The method includes
generating , by a request generator and during each parallel
memory address computation cycle , (i) m memory addresses
for a multi - dimensional tensor in parallel and , for each
memory address , (ii) a respective request for a memory
system to perform a memory operation for the multi - dimen
sional tensor , wherein the request generator comprises m
memory address units , wherein m is greater than or equal to
one , and wherein each memory address unit comprises a step
tracker and a memory address computation unit ; generating ,
by the step tracker of each memory address unit and for each
dimension of the multi - dimensional tensor , (i) a respective
step index value for the dimension and , based on the
respective step index value , (ii) a respective stride offset
value for the dimension ; generating , by the memory address
computation element of each memory address unit and
during each parallel memory address computation cycle , a
memory address for a tensor element of the multi - dimen

sional tensor based on each respective stride offset value ;
and transmitting , to the memory system , the request to
perform the memory operation using the memory address .
[0015] The subject matter described in this specification
can be implemented in particular embodiments so as to
realize one or more of the following advantages . The DMA
architectures described in this document enable the genera
tion of multiple (m) memory addresses for a multi - dimen
sional tensor in parallel , e.g. , per clock cycle , which pro
vides faster memory address generation and higher memory
throughput . The DMA architectures can include multiple
lanes that each have a step tracker that performs multi
striding techniques to compute memory addresses for tensor
elements in parallel based on a loop nest for the multi
dimensional tensor . The techniques used by request genera
tors of the DMA architectures enable the multiple step
trackers to operate in parallel using different step index
values for the multiple dimensions of the tensor to generate
addresses for different tensor elements in parallel during a
clock cycle and independent of each other step tracker . Each
step tracker can update its step index values during each
clock cycle in preparation for determining the memory
address for its next tensor element .
[0016] The DMA architectures can also include progress
trackers that provide partial synchronization updates to a
processor core that will consume data stored in the memory
at the determined memory addresses . This enables the
processor core to begin consuming data prior to an entire
DMA memory transaction being completed , thereby reduc
ing the latency imposed on the processor core by memory
transfers and increasing the overall efficiency of the proces
sor's computations . The progress trackers can include
response reorder units that can receive multiple responses at
a time and in any order from memories that can handle and
respond to the generated requests out of order . As the size of
the response reorder unit is limited , the response reorder unit
can release identifiers for requests when responses for at
least a threshold number of requests have been received .
This enables the request generator to use the released
identifiers to continue issuing memory requests without
waiting for responses to all of the maximum number of
requests , thereby increasing the speed and efficiency of
memory transfers .
[0017] Various features and advantages of the foregoing
subject matter is described below with respect to the figures .
Additional features and advantages are apparent from the
subject matter described herein and the claims .

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] FIG . 1 is a diagram of an example environment in
which a DMA thread generates and tracks progress of
memory operations .
[0019] FIG . 2A is a diagram of an example request gen
erator .
[0020] FIG . 2B depicts example pseudocode for determin
ing memory addresses .
[0021] FIG . 3 is a diagram of an example step tracker .
[0022] FIG . 4 is a diagram of an example step incrementer
chain .
[0023] FIG . 5 is a diagram of an example progress tracker .
[0024] FIG . 6 is a diagram of an example response reorder
unit .
[0025] FIG . 7 is a flow diagram that illustrates an example
process for generating requests for memory operations .

US 2021/0255976 A1 Aug. 19 , 2021
3

[0026] FIG . 8 is a flow diagram that illustrates an example
process for tracking the progress of memory operations .
[0027] Like reference numbers and designations in the
various drawings indicate like elements .

DETAILED DESCRIPTION

[0028] In general , this document describes DMA archi
tectures that are capable of performing multi - level multi
striding and determining multiple memory addresses in
parallel , e.g. , during and within a single clock cycle . A chip
can include one or more DMA engines that offload the
memory transfer operations from the processor core (s) of the
chip . Each DMA engine can include one or more DMA
threads . Each DMA thread is a hardware unit that manages
the execution of DMA transactions on behalf of the core (s) .
The clock cycle can be the time required for the execution
of one operation by a DMA engine or a core .
[0029] The example DMA architectures illustrated in
FIGS . 1-6 and described below provide a design that can
support up to four tensor dimensions and up to four source
and four destination memory addresses per clock cycle .
However , the DMA architectures do not specifically apply to
just four dimensions or four addresses per cycle . Similar
architectures can be used for other numbers of dimensions
and addresses per cycle . In addition , the number of
addresses per cycle can differ from the number of dimen
sions of the tensors for which addresses will be determined .
For example , a DMA thread can include five lanes to
generate five addresses per cycle , while the hardware is
configured to compute addresses for tensors having up to
four dimensions , up to 10 dimensions , or another maximum
number of dimensions . That is , the architecture is param
eterizable and the choice of settings depends on the area /
frequency goals for the design .
[0030] FIG . 1 is a diagram of an example environment 100
in which a DMA thread 120 generates and tracks progress of
memory operations . The DMA thread 120 can generate and
track the progress of the memory operations as part of a
transaction that is requested on behalf of a processor core .
The DMA thread 120 is a hardware unit that can
a DMA engine that includes the DMA thread 120 and
optionally one or more additional DMA threads . The DMA
thread 120 can manage DMA transactions , such as scatter
gather and other memory transfer operations , for one or
more processor cores , including the core 110. For example ,
the DMA thread 120 can orchestrate the transfer of multi
dimensional tensors between different memories of a
memory system on a chip that includes the core 110 and the
DMA thread 120. The DMA thread 120 orchestrates the data
movement by sending requests (commands) into the
memory system and tracks completion of those requests so
that it can synchronize progress with the core that requested
the transaction . Once the read / write requests / commands are
in the memory system , it can service each request indepen
dently without regard for request ordering . The DMA thread
120 handles the ordering of the requests / responses and
synchronization with the core . Offloading these memory
operations to the DMA thread 120 frees up compute cycles
on the core 110 for other tasks , e.g. , performing machine
learning computations , reshaping tensors , etc.
[0031] The core 110 can request a DMA transaction by
sending a descriptor 112 to the DMA thread 120. Each DMA
transaction can include one or more memory transfer opera
tions . The descriptor 112 includes information about the

DMA transaction . For example , the descriptor 112 can
include information specifying source memory 152 of a
memory system 150 from which data will be read (e.g. , the
memory address (es) of the source memory 152) , destination
memory 154 to which the data will be written (e.g. , the
memory address (es) of the destination memory 154) , the
size and shape (e.g. , the dimensions) of a source tensor for
which tensor elements are stored in the source memory 152 ,
and a size and shape of a destination tensor for which tensor
elements will be stored in the destination memory 154. A
tensor element is a piece of data in the tensor that corre
sponds to a particular indexed location in the tensor .
[0032] The size and shape of the source tensor can be the
same or different from the size and shape of the destination
tensor . For example , the size and shape can be different if the
tensor is being reshaped by the core 110. The descriptor 112
can define the size and shape of each tensor using a
steps - per - stride value for each dimension of the tensor . In a
for loop , the step size is the size of the increment for each
iteration of the loop and the steps - per - stride is the total
number of steps before the loop resets , e.g. , the loop bound
for the loop .
[0033] For example , the steps - per - stride for a dimension
of a tensor can be equal to the number of tensor elements
across that dimension . In particular , a 8x6x4x2 four dimen
sional tensor can have a steps - per - stride of 8 for a first
dimension , a steps - per - stride of 6 for a second dimension , a
steps - per - stride of 4 for a third dimension , and steps - per
stride of 2 for a fourth dimension . As described in more
detail below , the steps - per - stride can be used to traverse each
dimension of the tensor and compute memory addresses for
the tensor elements .
[0034] The descriptor 112 can also include a stride dimen
sion offset value for each dimension . These stride dimension
offset values (also referred to as dimension offset values) are
used to determine memory addresses for tensor elements , as
described below . The dimension offsets are stride distances .
At each step of the process along a tensor dimension , the
DMA thread 120 “ hops ” the memory address by the stride
dimension offset value . The descriptor 112 can include , for
the source tensor , a stride dimension offset value for each
dimension of the source tensor . The descriptor 112 can also
include , for the destination tensor , a stride dimension offset
value for each dimension of the destination tensor .
[0035] The DMA thread 120 includes a descriptor queue
122 that stores descriptors 112. For example , the DMA
thread 120 can execute multiple DMA threads sequentially
based on the descriptors 112 received and stored in the
descriptor queue 122. In some implementations , the descrip
tor queue 122 is a first - in , first - out (FIFO) queue such that
the DMA thread 120 executes DMA transactions in the order
in which the descriptors 112 for the DMA transactions are
received . The execution of DMA transactions is fully pipe
lined and can be implemented in a way that performs
out - of - order operations , but appears to the processor to
execute in program order .
[0036] The DMA thread 120 also includes a descriptor
splitter 124. The descriptor splitter 124 can extract , from a
descriptor 112 , the information used by a source subthread
130 and the information used by a destination subthread 140
and provide the appropriate information to each subthread
130 and 140 .
[0037] In general , the source subthread 130 generates read
requests to read data from source memory 152 , sends the

part of

US 2021/0255976 A1 Aug. 19 , 2021
4

read requests to the memory system 150 , tracks the progress
of the read operations , and synchronizes the core 110 with
the progress of the read operations . Similarly , the destination
thread 140 generates write requests to write data to desti
nation memory 154 , sends the write requests to the memory
system 150 , tracks the progress of the write operations , and
synchronizes the core 110 with the progress of the write
operations . The memory system 150 can be the main
memory for the core 110 or for a chip that includes the core
110 , e.g. , random access memory (RAM) for the core 110 or
chip . The memory system implements the actual memory
interconnect so that data that is read for each source memory
read request gets paired with the write request to the
destination memory . The data never passes through the
DMA thread (request addresses are sent out and responses
are received but those responses and requests carry no
memory data) .
[0038] The source subthread 130 includes a request gen
erator 132 that generates the read requests based on the
descriptor 112. As described in more detail below , the
request generator 132 can generate multiple memory
addresses in parallel , e.g. , per clock cycle , and generate a
read request for each memory address . For example , the
request generator 132 can generate a respective memory
address for each of multiple tensor elements during a single
clock cycle of the core 110 as it traverses a multi - dimen
sional tensor . Each read request can include a request
identifier “ request ID ") , the memory address from which
data is to be read , a memory opcode . The request IDs can be
sequence numbers or tags that are used to associate the
requests with responses since the responses can be received
out of order , as described below . The memory opcode
indicates the memory operation , e.g. , whether the request is
for a read , write , memset , or another operation targeting the
memory address of the request .
[0039] The source subthread 130 also includes a progress
tracker 134 that tracks the progress of the read operations
specified by the read requests . For example , the memory
system 150 can send , to the progress tracker 134 , read
responses to signal that the read operation has been com
pleted . Each read response can include the request ID of the
read request for which the response is being sent . In this
way , the progress tracker 134 can use the request IDs to track
the progress of the DMA transactions .
[0040] The destination subthread 140 includes a request
generator 142 that generates the write requests based on the
descriptor 112. As described in more detail below , the
request generator 142 can generate multiple memory
addresses in parallel , e.g. , per clock cycle , and generate a
write request for each memory address . For example , the
request generator 142 can generate a respective memory
address for each of multiple tensor elements during a single
clock cycle of the core 110 as it traverses a multi - dimen
sional tensor . Each write request can include a request ID
and specify the memory address to which data is to be
written .

[0041] The destination subthread 140 also includes a prog
ress tracker 134 that tracks the progress of the write opera
tions specified by the write requests . For example , the
memory system 150 can send , to the progress tracker 144 ,
write responses to signal that the write operation has been
completed . Each write response can include the request ID
of the write request for which the response is being sent . In

this way , the progress tracker 144 can use the request IDs to
track the progress of the DMA transactions .
[0042] The progress trackers 134 and 144 can send syn
chronization messages 115 and 116 , respectively , to the core
110 to update the core 110 on the progress of the DMA
transaction corresponding to the descriptor 112. The syn
chronization messages 115 and 116 can specify a level of
completion (e.g. , a percentage or total number of memory
operations completed) and / or the request IDs for which a
response has been received .
[0043] As described below , the progress trackers 134 and
144 can send synchronization messages 115 and 116 that
provide partial , or incomplete , updates on the progress of the
DMA transaction . For example , each progress tracker 134
and 144 can be configured to send a synchronization mes
sage 115 and 116 each time a specified number , e.g. , a
threshold number , of responses have been received for the
DMA transaction . In a particular example , each progress
tracker 134 and 144 can be configured to send a synchro
nization message 115 and 116 each time responses have
been received for a continuous sequence of at least a
threshold number of request IDs . As the core 110 can know
the order in which the memory operations are being per
formed (and therefore the order in which the tensor elements
are being moved) , the core 110 can begin processing the data
that has been transferred based on these partial updates
without having to wait for the entire set of DMA transactions
to be completed .
[0044] Using separate subthreads for the read and write
operations enables higher throughput . For example , if each
subthread 130 and 140 can generate a particular number of
requests in parallel per clock cycle , e.g. , four requests per
clock cycle , then the total number of requests generated by
the two subthreads 130 and 140 is double the particular
number , e.g. , eight requests .
[0045] In some cases , multiple DMA threads can be used
to execute a DMA transaction . For example , if the band
width of the memory is sufficient to handle more requests
per clock cycle than a single DMA thread can generate ,
multiple DMA threads can be used to generate the requests .
If multiple DMA threads are used to transfer data of a
multi - dimensional tensor , each DMA thread can receive a
descriptor for a portion of the multi - dimensional tensor , e.g. ,
a slice of the tensor . The descriptor can specify the size and
shape of the slice of the tensor and the memory addresses ,
similar to the descriptor for a full tensor .
[0046] FIG . 2A is a diagram of an example request gen
erator 200 , which can be used to implement each of the
request generators 132 and 142 of FIG . 1. In this example ,
the request generator 200 is configured for implementations
in which there are up to four tensor dimensions and up to
four memory addresses can be generated per clock cycle .
[0047] In general , the request regenerator 200 can deter
mine memory addresses for tensor elements in a multi
dimensional tensor or other multi - dimensional data structure
(referred to herein as a tensor for brevity) . The request
generator 200 can determine the memory addresses so that
data of the tensor can be read from memory and / or written
to memory . The request generator 200 can compute a
memory address for a tensor element based on step index
values of the tensor element that defines the location of the
tensor element within the tensor . The example request

US 2021/0255976 A1 Aug. 19 , 2021
5

generator 200 is implemented with a five stage design with
pipeline registers 220 , 230 , 240 , 260 , and 270 between
adjacent stages .
[0048] To determine the memory addresses , the request
generator 200 can traverse each dimension by stepping
through each step index value for each dimension . For
example , if a dimension includes ten elements , the request
generator 200 can step through the step index values in order
from one to ten . Conceptually , this can be performed using
a loop nest that includes a loop for each dimension of the
tensor . In such an example , a dimension of the tensor can be
traversed using its loop by incrementing the step index value
for the loop for each iteration of the loop until a loop bound
equal to the number of elements in the loop is reached . When
the loop bound is reached , a next outer loop is incremented
and the current loop resets to the first step index value
corresponding to the first element in the dimension . The
innermost loop can include a memory address computation
to determine the memory address for the tensor element at
the location within the tensor that corresponds to the step
index values of the four loops in the loop nest . Example
pseudocode 280 for determining memory addresses using
four loops is shown in FIG . 2B .
[0049] Referring to FIG . 2B , the pseudocode 280 includes
four loops 281-284 that are used to traverse the four dimen
sions of a tensor . The illustrated pseudocode 280 describes
half of a transaction (either the source - side reads or desti
nation - side writes) . The same or similar pseudocode can be
independently instantiated twice for the full transaction . In
the pseudocode 280 , the loop bound (steps_per_stride) for
each dimension is the same for both the source - side and
destination - side of the transfer but the stride offset values
(stride_dimension_offset_value_i) can be different . That is ,
steps_per_stride_0 is the same in the pseudocode for the
source - side and the destination - side , but stride_dimension_
offset_value_0 in the source - side pseudocode may be dif
ferent from stride_dimension_offset_value_0 in the destina
tion pseudocode .
[0050] The outermost loop 281 corresponds to one of the
dimensions and includes a step index value i , and loop
bound of steps_per_stride_0 . The loop bound steps_per_
stride_0 can be equal to the number of elements in the
dimension corresponding to the outermost loop 281. Simi
larly , the loop 282 corresponds to one of the dimensions and
includes a step index value i? and a loop bound of steps_
per_stride_1 (which can be equal to the number of elements
in the dimension corresponding to the loop 282) and the
loops 283 corresponds to one of the dimensions and includes
a step index value in and a loop bound of steps_per_stride_2
(which can be equal to the number of elements in the
dimension corresponding to the loop 283) .
[0051] The innermost loop 284 also corresponds to one of
the dimensions and includes a step index value iz and a loop
bound of steps_per_stride_3 (which can be equal to the
number of elements in the dimension corresponding to the
innermost loop 284) . For each iteration of the innermost
loop , a dimension memory address offset value would be
computed for each dimension of the tensor using functions
285 and these dimension memory address offset values are
used to determine a memory address for the tensor element
corresponding to the step index values i , -iz using function
286. The dimension memory address offset value (destina
tion_memory_address_offset_0) for the dimension corre
sponding to the outermost loop 281 is equal to the product

of the step index value i , for the loop and a stride dimension
offset value (stride_dimension_offset_value_0) for the
dimension . A dimension memory address offset value is
determined for each other dimension in a similar manner , as
shown in FIG . 2B . The stride dimension offset values for the
dimensions can be included in a descriptor , as described
above .

[0052] The memory address for the tensor element can
then be computed based on a base memory address and the
dimension memory address offset value for each dimension
of the tensor . For example , the memory address for a tensor
element can be based on , e.g. , equal to , the sum of the base
memory address and the dimension memory address offset
value for the dimensions , as shown in FIG . 2B .
[0053] Returning to FIG . 2A , the request generator 200
can perform similar memory address computations in par
allel , e.g. , without actually iterating the loops . In this
example the request generator 200 includes four lanes
201-204 for computing four memory addresses in parallel ,
e.g. , within one clock cycle . In other examples , two or more
lanes can be used to compute two or more memory addresses
in parallel , e.g. , three lanes for three memory address , five
lanes for five memory addresses , and so on . That is , the
request generator 200 can include m lanes to compute m
memory addresses in parallel , where m is greater than or
equal to one . The request generator 200 can compute m
memory addresses during a parallel memory address com
putation cycle , which can have a duration that is less than or
equal to a single clock cycle .
[0054] The number of lanes can be the same as , or
different from , the number of dimensions of the tensors . For
example , the request generator 200 can be used to compute
memory addresses for tensors having different numbers of
dimensions , based on the information included in a descrip
tor 112. For example , the request generator 200 having four
lanes can compute up to four memory addresses per cycle
for a three - dimensional tensor using up to all four lanes . The
same request generator 200 can also compute up to four
addresses per cycle for a one , two , or four - dimensional
tensor using up to all four lanes .
[0055] Performing such computations in parallel based on
the multi - level multi - striding (four level multi - striding in
this example) can be difficult as each lane 201-204 has to
compute a memory address for a different tensor element
than each other lane and each lane operates independently of
each other lane . As each lane 201-204 computes a memory
address in parallel , e.g. , at the same time , one lane cannot
wait for the other lane to complete and then iterate one or
more loops to determine the memory address for the next
tensor element . Instead , each lane has to be able to determine
its next tensor element (e.g. , the step index values for its next
tensor element) and determine the memory address for that
tensor element without waiting on another lane .
[0056] The request generator 200 includes , for each lane
201-204 (and therefore for each parallel memory address
computation) , a memory address unit 242-248 . Each
memory address unit 242-248 includes a respective step
tracker 222-228 and a respective memory address compu
tation element 252-258 . In general , the step trackers 222-228
are configured to step through the tensor elements of the
tensor and determine the dimension memory address offset
values for the tensor elements . The memory address com
putation elements 252-258 are configured to determine the

US 2021/0255976 A1 Aug. 19 , 2021
6

memory addresses for the tensor elements using the dimen
sion memory address offset values received from the step
trackers 222-228 .
[0057] The request generator 200 includes computation
elements 210 that pre - compute values for the step trackers
222-228 . For example , the computation elements 210 can
precompute various step comparison values that can be used
by the step trackers 222-228 to determine the next step index
values for a next tensor element for which a memory address
will be determined . As described below , a comparison of the
current step index value to the step comparison values can
be used along with other criteria to determine the next step
index value . The computation elements 210 can precompute
step comparison values for each dimension of the tensor .
These step comparison values can be , for example , the
steps - per - stride for the dimension minus one , the steps - per
stride for the dimension minus two , the steps - per - stride for
the dimension minus three , and so on depending on the
number of dimensions of the tensor for the current descriptor
112 for which the request generator 200 is generating
memory addresses and sending requests . The computation
elements 210 are optional as are the pre - computed values .
Pre - computing the values can help improve critical path
timing on the next clock cycle .
[0058] The computation elements 210 can include a set of
hardware adders that precompute the step comparison values
and store the step comparison values in a register 220 (or
other appropriate data storage element) . The computation
elements 210 can compute the comparison offset values
based on the steps - per - stride values received in a descriptor .
The descriptor can include a steps - per - stride value for one or
more of the dimensions . In this example , the descriptor can
include the steps - per - stride value for dimensions 1-3 (sps_1
to sps_3) , but not for dimension 0 (e.g. , the dimension
corresponding to the outermost loop) . For example , if the
steps - per - stride variables are represented using 32 - bit signed
integers , then the steps - per - stride value for dimension 0 can
be implied to be the maximum integer value , e.g. , the
maximum integer value that can be stored in a signed 32 - bit
integer . In another example , the steps - per - stride value can be
included in the descriptor , but not shown in FIG . 2A .
[0059] As the steps - per - stride values can vary based on the
size and shape of the tensor , the computation elements 210
can precompute the step comparison values for each descrip
tor and store the step comparison values in the register 220 .
The descriptors can also be stored in the register 220 .
[0060] The request generator 200 also includes a finite
state machine (FSM) 232. The FSM 232 can initialize and
control the step trackers 222-228 based on information from
the descriptor 112. For example , the FSM 232 can obtain the
descriptor information from a register 230 and determine ,
based on the descriptor information , the number of requests
that will be sent for a DMA transaction defined by the
descriptor . This number can be the number of tensor ele
ments in the tensor . The FSM 232 can track the number of
remaining requests to be sent and send , to each step tracker
222-224 an advance amount that is based on this number of
remaining requests . The advance amount defines the number
of memory addresses to be computed during the next cycle
of memory address computations performed by the memory
address computation elements 252-258 .
[0061] For example , during the course of executing a
DMA transaction using all four lanes 201-204 , the advance
amount may be equal to four . However , if the total number

of memory addresses to be computed for the DMA trans
action is less than four , the advance amount for the last cycle
will be less than four . For example , if the total number of
memory addresses is 18 , the FSM 232 would provide an
advance amount of four to each step tracker 222-228 for the
first four cycles , and then provide an advance amount of two
for the final cycle .
[0062] The FSM 232 can also stall the step trackers 232 .
For example , as described below , the progress trackers 134
and 144 may only track the progress of a particular number
of requests at one time . The request generator 200 can stall
itself , e.g. , stalling the step trackers 232 , when it runs out of
allocated request IDs . The progress trackers 134 and 144 can
return request ID credits when request IDs are freed and can
be re - allocated , e.g. , when a response is received for at least
a threshold number of sequential request IDs as described
below .
[0063] The request generators 132 and 142 can also stall
due to external interconnect backpressure (i.e. , the memory
system cannot yet accept new requests) . In some implemen
tations , each DMA thread 120 can be independently
throttled using a hardware FSM that is configurable by
software . Software can set a target request generation band
width for each DMA thread 120 over a configurable sam
pling window and the DMA thread 120 will automatically
stall its pipeline once the allocated bandwidth has been
reached . Thus , the DMA thread 120 can be stalled in three
different circumstances : memory system network backpres
sure , request bandwidth throttling , and exhausted request ID
allocation (waiting on progress tracker to return credit) .
[0064] Each step tracker 222-228 uses the advance amount
received from the FSM 232 , a current step index value for
each dimension of the tensor , and the steps - per - stride value
for each dimension to determine a next step index value for
each dimension . Each step tracker 222-228 also determines
a dimension memory address offset value for each dimen
sion based on the next step index value for the dimension
and the stride dimension offset value for the dimension .
Each step tracker 222-228 outputs the determined dimension
memory address offset values to its corresponding memory
address computation element 252-258 via a register 240. As
described below , the memory address computation elements
252-258 determine the memory address for a tensor element
based on the received dimension memory address offset
values .
[0065] The step trackers 222-228 determine the dimension
memory address offset values for different tensor elements
than each other . For example , consider a 2x2x2x2 tensor (or
other shape tensor) that includes 16 total tensor elements . As
the four lanes 201-204 generate four requests per cycle , each
step tracker 222-228 would determine the dimension
memory address offset values for a total of four of the 16
tensor elements . For example , the step tracker 222 can
determine the dimension memory address offset values for a
first , fifth , ninth , and thirteenth tensor elements , while the
step tracker 224 determines the dimension memory address
offset values for a second , sixth , tenth , and fourteenth tensor
elements , and so on .
[0066] The step trackers 222-228 can determine their
respective dimension memory address offset values in par
allel with each other and independent of each other . That is ,
in some implementations , the step trackers 222-228 do not
communicate any data to any other step tracker 222-228 .
Instead , each step tracker 222-228 can be configured to

US 2021/0255976 A1 Aug. 19 , 2021
7

determine its next tensor element (e.g. , the step index values
for its next tensor element) based on the initialization of the
step tracker 222-228 and the advance amount received from
the FSM 232 , as described in more detail below . In this way ,
neither step tracker 222-228 has to wait on another step
tracker 222-228 and the parallel computations can be com
pleted by all step trackers 222-228 in a single clock cycle .
Example architectures of step trackers and techniques for
determining the dimension memory address offset values are
illustrated in FIGS . 3 , 4 , and 7 and described below .
[0067] Each memory address computation element 252
258 includes a first summation element 262A - 268A and a
second summation element 262B - 268B . Each first summa
tion element 262A - 268A can determine a sum of the dimen
sion memory address offset values received from its step
tracker 222-228 for each parallel memory address compu
tation cycle . For example , the summation element 262A can
determine the sum of the four dimension memory address
offset values generated by the step tracker 222 for a given
tensor element . The first summation elements 262A - 268A
can be implemented as hardware adders .
[0068] The second summation elements 262B - 268B ,
which can also be implemented as hardware adders , can
determine a memory address for a tensor element based on
a base address and the sum of the dimension memory
address offset values computed by its corresponding first
summation element 262A - 268A . For example , summation
element 262B can determine a memory address for a given
tensor element by adding the base address to the sum of the
four dimension memory address offset values generated by
the step tracker 222 for the given tensor element .
[0069] The second summation elements 262B - 268B can
output their memory addresses to a register 270. A request
transmitter 290 can generate a request for each memory
address and send the requests to a memory system , e.g. , the
memory system 150 of FIG . 1. A request can include a
request ID and the memory address . The request IDs can be
allocated to requests in order . For example , if the DMA
thread is configured to have 500 requests outstanding at a
time , the request IDs can start at 0 or 1 and go up to 499 or
500 , respectively . If 0-499 are used , the first request can
include request ID 0 , the second request can include request
ID 1 , and so on . The request transmitter 299 can include a
counter that determines the request ID for each request .
[0070] The four lanes 201-204 can each generate a
memory address for a tensor element in parallel during a
single clock cycle . The FSM 232 can control the step
trackers 222-228 of the lanes 201-204 to iterate through each
tensor element of the tensor until a memory address is
computed for each tensor element in the tensor . When
finished issuing requests for a descriptor , the FSM 232 can
move to the next descriptor . However , the FSM 232 does not
have to wait for responses to all of the requests to be
received . If there are at least a threshold number of sequen
tial request IDs available (e.g. , for which responses have
been received) , the progress tracker 132 or 134 can notify
the request generator 200 so that the request generator 200
can issue requests for the next descriptor using those avail
able request IDs . This further increases the throughput and
efficiency of the DMA thread .
[0071] As described above , the request generators 132 and
134 of both DMA subthreads 132 and 134 can be imple
mented using the request generator 200. In this example ,

each subthread 132 and 134 would be capable of sending
four requests per clock cycle .
[0072] FIG . 3 is a diagram of an example step tracker 300 ,
which can be used to implement each of the step trackers
222-228 of FIG . 2A . In this example , the step tracker 300
includes two incrementer chains 322 and 324 that can
perform the same or similar functions to generate step index
values and dimension memory address offset values for
tensor elements . This allows for one of the step incrementer
chains to actively determine dimension memory address
offset values for a current descriptor begin processed by the
DMA thread , while the other step incrementer chain is
initialized for the next descriptor to be processed by the
DMA thread .

[0073] For example , the step incrementer chain 324 can be
actively determining the dimension memory address offset
values for a current descriptor . The step incrementer chain
324 can use an advance amount received from a FSM , e.g. ,
the FSM 232 of FIG . 2 , and stride parameters (as defined by
the descriptor) to determine the dimension memory address
offset values for the current descriptor . While the step
incrementer chain 324 is active , the FSM can initialize the
step incrementer chain 322 , as described below with refer
ence to FIG . 4 .

[0074] While the last cycle of memory addresses is
requested for the current descriptor , the FSM can switch to
the initialized step incrementer chain 322 and send the step
incrementer chain 322 an initialization amount . The step
incrementer chain 322 can generate a first set of dimension
memory address offset values on the very next clock cycle
after the clock cycle in which the step incrementer chain 324
determines its last set of dimension memory address offset
values . Using two step incrementer chains in this way can
significantly improve the throughput and efficiency of the
DMA threads , especially for small tensors . For example , if
it only takes the request generator three clock cycles to
determine all of the memory addresses for the tensor , using
a clock cycle to re - initialize a single step incrementer chain
between tensors results in a 25 % decrease in the throughput
(e.g. , the number of memory operations performed per unit
time) .
[0075] When switching between step incrementer chains
322 and 324 , the FSM can control a set of multiplexers
332-338 to select which step incrementer chain's output is
sent to the memory address computation units via a register
342. For example , the FSM can select the top lane of each
multiplexer 332-338 when the incrementer chain 322 is
active and the bottom lane of each multiplexer 332-338
when the increment chain 324 is active .

[0076] As described above with reference to FIG . 2B , each
lane 201-204 includes a step tracker that can be imple
mented as the step tracker 300. In this example , the step
tracker 300 is for lane () and outputs the four dimension
memory address offset values for lane 0 .
[0077] Although not shown , each step tracker 300 can also
output the next step index values used to determine the
dimension memory address offset values . These next step
index values are input back to the step tracker 300 for use in
determining the subsequent step index values and dimension
memory address offset values . That is , the step incrementer
chain 324 can determine the step index values for each
dimension and the dimension memory address offset value

US 2021/0255976 A1 Aug. 19 , 2021
8

for each dimension . These values can be fed back to the step
incrementer chain 324 as the current values that will be used
to determine the next values .
[0078] The step tracker 300 can also include multiplexers
for the step index values that receives , for each dimension ,
a step index value from both step incrementer chains 322
and 324 , similar to how the multiplexers 322-338 receive
dimension memory address offset values from both step
incrementer chains 322 and 324. The output of these mul
tiplexers can be fed into the step incrementer chain 324 for
use in determining subsequent step index values .
[0079] While the step incrementer chain 324 computes the
dimension memory address offset values for the current
descriptor , the step incrementer chain 322 can determine the
dimension memory address offset values for the first set of
memory addresses for the next descriptor using the initial
ized state . However , the FSM can control the multiplexers
332-338 to pass the dimension memory address offset values
received from the step incrementer chain 324. When the
current descriptor is completed , the FSM can control the
multiplexers 332-338 to pass the dimension memory address
offset values computed by the step incrementer chain 322 for
one cycle , which would include the values for the first four
tensor elements of the next tensor . The FSM can also control
the multiplexers for the step index values to pass the step
index values from the step incrementer 322 to the step
incrementer chain 324 for this one cycle . After that , the step
incrementer chain 324 has the current state of the step index
values and can determine the dimension memory address
offset values for the remaining cycles for this descriptor .
After the first cycle for this descriptor is completed , the FSM
can control the multiplexers to once again pass the outputs
of the step incrementer chain 324 .
[0080] FIG . 4 is a diagram of an example step incrementer
chain 400. The step incrementer chain 400 can include a step
incrementer for each dimension of the largest tensor for
which the DMA thread is configured to handle . In this
example , the step incrementer chain 400 includes four step
incrementers 410-440 for up to four dimensional tensors .
The example step incrementer chain illustrated in FIG . 4 is
implemented as a combinational function , similar in style to
a carry - ripple adder circuit .
[0081] Each step incrementer 410-440 can receive a set of
parameters . The set of parameters for a step incrementer
410-440 can include the steps - per - stride for the dimension
corresponding to the step incrementer 410-440 and each step
comparison value for the dimension that was pre - computed
by the computation elements 210. The step incrementers
410-440 can be initialized for each descriptor as these values
can vary based on the size and shape of the tensor for which
the DMA transaction is being performed .
[0082] Each step incrementer 410-440 can also receive a
step index value for its dimension and a dimension offset
value for the dimension . The step index value for the
dimension can be initialized at zero for the first cycle (as
shown by the input values to the step incrementer chain
322) . After the first cycle , the step index value that is
inputted to the step incrementer 410-440 is the next step
index value output by the step incrementer 410-440 . As
described above , the dimension offset value for a dimension
is the value multiplied by the step index value to determine
the dimensions memory address offset value . In comparison
to using the four loops of the pseudocode 280 of FIG . 2B ,
the step incrementer 410 functions similarly to the innermost

loop of the loop nest . However , rather than increment the
step index by one for each iteration of the loop , the step
incrementer 410 increments its step index value based on the
advance amount received from the FSM . For example , if the
advance amount is four , the step incrementer 410 would
increment the step index value for its dimension by four . If
this increment exceeds the steps - per - stride for the dimen
sion , then the step incrementer can re - initialize the step
index value to zero and keep incrementing until it has been
incremented four times , which can include more than one
re - initialization . For example , if the steps - per - stride is three
and the advance amount is four , the step incrementer 410
would increment from zero to three , reinitialize to zero ,
increment from zero to one after the four increments .
[0083] Rather than use stateful iterations , the step incre
menter 410 can use a combinatorial function that behaves
similar to a pair of optimized adders . Like an adder , part of
the step incrementer takes two operands (“ step 3 index ” and
“ advance_amount ”) and produces a sum (“ step 3 next
index ”) and a carry - out (“ wrap amount ”) . The functionality
is similar for the dimension offsets , except that the function
that computes the next dimension offset does not produce the
wrap amount output .
[0084] The step incrementer 410 can output the wrap
amount to the step incrementer 420. The wrap amount can
be equal to the number of times the step index value of the
step incrementer 410 would have reinitialized in the current
cycle based on the received advance amount . That is , the
wrap amount reflects the number of times the four loops
would have wrapped around based on the advance amount .
[0085] For each cycle in which the step incrementers
410-440 compute their dimension memory address offset
values , e.g. , during a single clock cycle , the step incrementer
410 can compute the next step index value for its dimension ,
the wrap amount for the step incrementer 420 , and the
dimension memory address offset value (e.g. , the product of
the next step index value and the dimension offset value for
the dimension) .
[0086] The step incrementer 420 can use the wrap amount
received from the step incrementer 410 similar to the way in
which the step incrementer 420 used the advance amount
received from the FSM . That is , the wrap amount represents
the number of times the step index value of the dimension
corresponding to the step incrementer 420 is to be incre
mented this cycle . The step incrementer 420 can increment
its step index value using the wrap amount received from the
step incrementer 410 to determine the next step index value .
The step incrementer 420 can also determine its dimension
memory address offset value using the next step index value
(e.g. , the product of the next step index value and the stride
dimension offset value for the dimension) .
[0087] Similar to the step incrementer 410 , the step incre
menter 420 can also compute and output a wrap amount to
the step incrementer 430. The wrap amount can be equal to
the number of times the step index value of the step
incrementer 420 was reinitialized in the current cycle based
on the received wrap amount from the step incrementer 410 .
That is , the wrap amount reflects the number of times the
four loops would have wrapped around based on the
received wrap amount .
[0088] The step incrementer 430 can use the wrap amount
received from the step incrementer 420 in a similar manner .
That is , the wrap amount represents the number of times the
step index value of the dimension corresponding to the step

US 2021/0255976 A1 Aug. 19 , 2021
9

incrementer 430 is to be incremented this cycle . The step
incrementer 430 can increment its step index value using the
wrap amount received from the step incrementer 420 to
determine the next step index value . The step incrementer
430 can also determine its dimension memory address offset
value using the next step index value (e.g. , the product of the
next step index value and the stride dimension offset value
for the dimension) .
[0089) Similar to the step incrementer 420 , the step incre
menter 430 can also compute and output a wrap amount to
the step incrementer 440. The wrap amount can be equal to
the number of times the step index value of the step
incrementer 430 was reinitialized in the current cycle based
on the received wrap amount from the step incrementer 420 .
That is , the wrap amount reflects the number of times the
four loops would have wrapped around based on the
received wrap amount .
[0090] The step incrementer 440 can use the wrap amount
received from the step incrementer 430 in a similar manner .
That is , the wrap amount represents the number of times the
step index value of the dimension corresponding to the step
incrementer 440 is to be incremented this cycle . The step
incrementer 440 can increment its step index value using the
wrap amount received from the step incrementer 430 to
determine the next step index value . The step incrementer
440 can also determine its dimension memory address offset
value using the next step index value (e.g. , the product of the
next step index value and the stride dimension offset value
for the dimension) .
[0091] For each cycle in which the step incrementers
410-440 compute their dimension memory address offset
values , e.g. , during a single clock cycle , the step increment
ers 410-440 can each compute the next step index value for
its dimension , the wrap amount for the next step incrementer
(if appropriate) , and the dimension memory address offset
value (e.g. , the product of the next step index value and the
stride dimension offset value for the dimension) .
[0092] In some implementations , each incrementer 410
440 can use a set of criteria in determining the next step
index value for its dimension and / or the wrap amount for its
dimension . This criteria can include the increment amount
(e.g. , the advance amount for incrementer 410 or the wrap
amount for the incrementers 420-440) . The criteria can also
include the steps per stride for the dimension , and a com
parison of the current step index value to a step comparison
value .
[0093] For example , a table , e.g. , a lookup table , can be
generated that specifies what the next step index value will
be and the wrap amount will be for each particular combi
nation of increment amount , steps per stride , and which step
comparison value the current step index value matches . The
particular combinations can differ based on the number of
dimensions of the tensors for which the request generator
can generate memory addresses . In this way , each step
incrementer 410-440 can simply compare the increment
amount and current step index value to the table to determine
what the next step index value and wrap amount will be .
(0094] FIG . 5 is a diagram of example progress tracker
500 , which can be used to implement each of the progress
trackers 134 and 144 of FIG . 2A . The progress tracker 500
includes a progress tracker queue 510 , a response reorder
unit 520 and a synchronization unit 530 .
[0095] The progress tracker queue 510 can receive
descriptors (or the relevant part of descriptors that it needs

to handle responses and synchronization) from a descriptor
and store the descriptors . The descriptors enable the syn
chronization unit 530 to determine the progress of the DMA
transactions defined by the descriptors , as described below .
[0096] The response reorder unit 520 can receive
responses received from a memory system , e.g. , the memory
system 150 of FIG . 1. Each response can specify a request
ID of a request that corresponds to the response . That is , the
memory system can send , to the progress tracker 500 , a
response to each completed request received from the
request generator that corresponds to the progress tracker
500 .
[0097] The response reorder unit 520 can receive the
responses in any order and reorder the responses based on
their request IDs . The memory system can process requests
in different orders then the order in which the requests are
received . For example , the memory system can use band
width optimization techniques to prioritize some requests
over other requests . In view of this , the response reorder unit
520 can be configured to receive out of order responses and
reorder the responses to track the progress of the memory
operations being completed by the memory system . An
example response reorder unit is illustrated in FIG . 6 and
described in more detail below .
[0098] The synchronization unit 530 can receive progress
data from the response reorder unit and send synchroniza
tion messages to the core , e.g. , to the core 110 of FIG . 1. For
example , the synchronization unit 530 can receive , from the
response reorder unit 520 , data specifying a number of in
order request IDs have been received . The synchronization
unit 530 can be configured to send a synchronization mes
sage each time at least a threshold amount (or threshold
percentage) of the memory operations defined by the
descriptor have been completed . For example , the synchro
nization unit 530 can determine a total number of memory
operations (e.g. , read or write depending on the subthread)
to be performed for the current descriptor . The synchroni
zation update unit 530 can be configured to send a synchro
nization message to the core each time at least 10 % of the
memory operations have been completed . As described
above , the core can use these partial updates to start con
suming the transferred data without waiting for all of the
memory operations defined by a descriptor to be completed .
[0099] The response reorder unit 520 and / or the synchro
nization unit 530 can be configured to notify the request
generator of a set of request IDs can be reused by the request
generator . For example , each time at least a threshold
number of in order request IDs have been received in
responses from the memory system , these request IDs can be
released to the response generator for reuse . This enables the
request generator to continue generating requests after the
request generator has sent the maximum number of requests
that can be handled by the progress tracker 500 , but before
all the requests have been completed .
[0100] For example , assume that the progress tracker 500
includes a response reorder buffer that can only track 500
memory operations at one time and the request IDs are
0-499 . If all 500 memory operations have been used in
requests and none of the requests have been responded to ,
the request generator has to stall until it receives a notifi
cation from the progress tracker 500 specifying available
request IDs . If the progress tracker 500 receives responses
for request IDs 0-15 (but not for all of the identifiers) and the
threshold is less than 15 , the progress tracker 500 can send

US 2021/0255976 A1 Aug. 19 , 2021
10

pop count

a notification (e.g. , a request ID credit return message)
specifying that the request generator can resume sending
requests using request IDs 0-15 without waiting for all 500
memory operations to be completed .
[0101] FIG . 6 is a diagram of an example response reorder
unit 600 , which can be used to implement the response
reorder unit 520 of FIG . 5. The response reorder unit 600
includes a response vector 610 and a reorder vector 630 ,
each of which can be implemented using a bit - vector reg
ister . The response vector 610 and the reorder vector 630 can
each include a bit for each request ID that can be issued by
the request generator . This bit can indicate the status of the
request ID . For example , if the bit has a value of zero , the
response for the memory operation has not been received . If
the bit has a value of one , a response for the memory
operation has been received . The response vector 610 , the
reorder vector 630 , and a pop vector (described below) can
all be the same size , e.g. , include the same number of bits .
[0102] The response vector 610 can be configured to
receive multiple responses at a time , e.g. , up to four
responses at a time in this example . For example , the
response vector 610 can be configured to receive a number
of simultaneous responses that matches the number of lanes
of the corresponding request generator . In other examples ,
the response vector 610 can be configured to receive a
number of simultaneous responses that differs from the
number of lanes of the corresponding request generator , e.g. ,
that is more than the number of lanes .
[0103] The bits in the reorder vector 630 can be arranged
in order by the request IDs . At the input of the reorder vector
630 is a logical OR gate 624. The OR gate 624 can be a
bit - vector OR gate that includes an OR gate for each bit of
the reorder vector 630. For each request ID , the bit of the
response vector for the request ID and a bit for the request
ID output by an AND gate 622 (e.g. , a bit - vector AND gate)
can be the input to an OR gate to determine the value of the
bit for the request ID in the reorder vector 630 .
[0104] This AND gate 622 has a pair of inputs for each
request ID , and thus each bit of the reorder vector 630. For
a given request ID , if the bit in the reorder vector 630 and

bit for the request ID in a pop vector maintained by
pop vector logic 640 both have a value of one , the output of
the AND gate is a one for the given request ID . As described
below , the pop bit for a memory address can be set to one
to clear the bit back to a value of zero , e.g. , when the request
ID is released for use by the request generator . That is , if the
response for the request ID is received and the request ID
has not yet been released , the output of the AND gate 622
for the bit corresponding to the request ID would be a one .
If the request ID has been released , the output of the AND
gate 622 for the bit would be a zero as the input from the pop
vector would be a one .
[0105] The response reorder unit 600 also includes head
pointer logic 650 , the pop vector logic 640 , and internal pop
count logic 660. The head pointer logic 650 can maintain a
pointer at the next bit after the bit in the reorder vector 630
for the highest in order request ID for which a response has
been received . The in order request IDs can start at the first
request ID and extend through each sequential request ID for
which a response has been received until it reaches a request
ID for which a response has not been received . For example ,
if the request IDs include 0-499 and responses have been
received for 0-8 , 11 , 56 , and 61-78 , the in order request IDs
would be 0-8 . In this example , the head pointer would point

to the bit for request ID 9. Once responses are received for
request IDs 9 and 10 , the in order request IDs would be (-11 ,
assuming a response has not yet been received for request ID
12 .
[0106] The head pointer logic 650 can also precompute
additional head pointers , such as head pointer plus one (e.g. ,
the next bit after the bit to which the head pointer is pointing ,
head pointer plus two , and so on . In this way , the
logic 660 can pop more than one bit in the reorder vector 630
during a single clock cycle . This is an optional feature that
can be used to meet the timing of a given clock frequency .
The logic complexity grows substantially for a large reorder
vector with many responses per cycle . This precomputation
can be used when the target frequency is relatively fast or
when there are many responses per cycle (e.g. , many lanes) .
[0107] The internal pop count logic 660 can monitor the
bits in the reorder vector 630 to determine how many bits of
the reorder vector can be popped (e.g. , cleared) when the
head pointer moves . For example , the internal pop count
logic 660 can look ahead at any strings of bits with a value
of one indicating that a response has been received for the
memory operations corresponding to the bits . When the head
pointer logic 650 moves to another bit , the head pointer logic
630 can provide the location (e.g. , the bit) to where the head
pointer is moving (e.g. , head_plus_i_next) . Based on the
new position of the head pointer and the monitored bits , the
internal pop count logic 660 can determine how many bits
can be popped , e.g. , up to a maximum number of pops per
clock cycle . For example , if the head pointer can move up
ten bits and the maximum number of pops is four bits per
clock cycle , the internal pop count logic 660 can instruct the
pop vector logic 640 to pop four bits a first cycle , four bits
a second cycle , and two bits a third cycle . The head pointer
will increment by the same number of entries that are
popped that cycle , so in this example it can advance by up
to four per cycle .
[0108] The pop vector logic 640 can maintain a pop vector
of the bits that are to be popped and provide this pop vector
as an input to the AND gate 622. The pop vector logic 640
can determine which bits to pop based on the head pointer
and the additional head pointers and the number of bits to
pop received from the internal pop count logic 660. For
example , if the number of bits to pop is four , the pop vector
logic 640 can pop the bits from the current head pointer to
head pointer plus four . As the value of head pointer plus four
is already computed , the pop vector logic 640 does not have
to consume clock cycles to determine the location of the bits

a pop

to pop
[0109] The head pointer logic 650 can also receive , from
the pop count logic , the number of bits to be popped . The
head pointer logic 650 can update the head pointer and
precompute the additional head pointers based on the num
ber of bits to be popped .
[0110] The response reorder unit 600 also includes an in
order items register 672 and computation elements 670 and
674. The in order items register 672 can maintain a count of
the number of in order items that have been popped , but that
have not yet been released to the request generator . To do so ,
the computation unit 670 aggregates the number of bits that
have been popped based on the output of the internal pop
count logic 660 .
[0111] The number of in order items in the register 672 is
also sent to the synchronization unit 530. The synchroniza
tion unit 530 can determine , based on the number of in order

US 2021/0255976 A1 Aug. 19 , 2021
11

or more

one or more

items that have been popped , when to release request IDs to
the request generator . For example , the synchronization unit
can send data specifying a quantity of request IDs that can
be used by the request generator , e.g. , the request ID credit
return) . The computation unit 674 can subtract this number
from the number of in order items currently in the register
672 and update the register with the result (plus any newly
popped items from the internal pop count logic 660) . For
example , if the register 672 indicates that there have been 15
in order items popped and the synchronization unit 530
releases 10 to the request generator , the computation ele
ment 674 can subtract the 10 released request IDs from the
15 request IDs and store and update value of five request
IDs . In this way , the register 272 stores a running count of
the number of request IDs that can be released to the request
generator .
[0112] FIG . 7 is a flow diagram that illustrates an example
process 700 for generating requests for memory operations .
The process 700 can be performed by a request generator ,
e.g. , the request generator 132 or 142 of FIG . 1 , or the
request generator 200 of FIG . 2 .
[0113] The request generator receives one
descriptors (702) . Each descriptor includes information
about a DMA transaction , e.g. , a set of memory transfer
operations . For example , a descriptor can include informa
tion specifying source memory from which data will be read ,
destination memory to which the data will be written , the
size and shape (e.g. , the dimensions) of a source tensor for
which tensor elements are stored in the source memory , a
size and shape of a destination tensor for which tensor
elements will be stored in the destination memory , and a
stride dimension offset value for each dimension .
[0114] The request generator initializes step trackers
(704) . As described above , the request generator can include
multiple lanes that each compute a memory address in
parallel , e.g. , per clock cycle . Each lane can include a step
tracker and a memory address computation unit . Each step
tracker can include a step incrementer chain . Initializing the
step tracker can include providing step parameters to each
step incrementer and initializing the step index value for
each step incrementer .
[0115] The request generator generates memory addresses
(706) . For example , the request generator can use the
multiple lanes to compute multiple memory addresses in
parallel , e.g. , during a single clock cycle . In particular ,
during a clock cycle , each step tracker can compute a next
step index value for each dimension of the tensor (which
corresponds to a particular tensor element in the tensor) and
compute a dimension memory address offset value for each
dimension using the next step index value for the dimension
and the stride dimension offset value for the dimension . The
memory address computation unit of each lane can then
compute a memory address based on the dimension memory
address offset value for each dimension output by the step
tracker on the lane and a base address . For example , the
memory address for a lane (and therefore a tensor element)
can be the sum of the base address and the dimension
memory address offset values .
[0116] The request generator generates and sends requests
to a memory system (708) . The requests can be read requests
or write requests . Each request can specify a request ID and
a memory address computed during this cycle . That is , the
request generator can generate and send a respective request
for each computer memory address . The request generator

can send the requests to a memory system that performs the
read or write operation using the memory address in the
request .
[0117] The request generator determines whether there are
more tensor elements for which to compute a memory
address (710) . For example , as described above , an FSM can
track the number of requests remaining to be generated for
a descriptor . If there are more tensor elements , the process
700 returns to step 706 to generate more memory addresses .
[0118] If there are no additional tensor elements , the
request generator determines whether there are additional
descriptors for which to perform DMA transactions (714) .
For example , the request generator can check a descriptor
queue to determine whether there are any additional descrip
tors in the queue . If not , the process ends . If so , the process
returns to step 704 , where the step trackers are initialized for
the next descriptor . As described above , the step trackers can
be initialized prior to the completion of the DMA transaction
for a previous descriptor .
[0119] FIG . 8 is a flow diagram that illustrates an example
process 800 for tracking the progress of memory operations .
The process 800 can be performed by a progress tracker ,
e.g. , the progress tracker 134 or 144 of FIG . 1 , or the
progress tracker 500 of FIG . 5 .
(0120] The progress tracker receives
responses (802) . For example , a memory system can send a
response to the progress tracked in response to completing
a memory operation . The response can specify the request
ID for the completed memory operation .
[0121] The progress tracker updates a reorder vector
(804) . The progress tracker can update the reorder vector to
indicate that the memory operation corresponding to the
request ID has been completed . For example , the progress
tracker can update a bit for the request ID from a value of
zero to a value of one to indicate that the memory operation
corresponding to the request ID has been completed .
[0122] The progress tracker determines whether a number
of consecutive elements (e.g. , bits for request IDs) is greater
than or equal to a threshold (806) . If so , the progress tracker
can release the request IDs for reuse by a request generator
(808) . If not , the process 800 continues to step 810 without
releasing any request IDs .
[0123] In step 810 , the progress tracker determines
whether a number of responses received is greater than or
equal to a threshold . This number can be a number of
responses received since a previous synchronization mes
sage was sent to a core for which the memory operations are
being performed . In another example , the progress tracker
can determine whether at least a threshold percentage of the
total number of responses to be received have been received .
[0124] In either example , if the threshold has been reached
or exceeded , the progress tracker can synchronize with the
core (812) . For example , the progress tracker can send , to
the core , a synchronization message that indicates the total
number or total percentage of responses received . In another
example , the progress tracker can send , to the core ,
synchronization message that indicates a number of
responses received since a previous synchronization mes
sage was sent to the core .
[0125] If the threshold has not been reached , the process
800 continues to step 814. In step 814 , the progress tracker
determines whether all responses have been received for a
descriptor . If not , the process 800 returns to step 802 , in
which more responses are received . If so , the progress

a

US 2021/0255976 A1 Aug. 19 , 2021
12

tracker can synchronize with the core 816 , e.g. , by sending
a synchronization message indicating that all of the memory
operations for the descriptor have been completed .
[0126] While this specification contains many specific
implementation details , these should not be construed as
limitations on the scope of any inventions or of what may be
claimed , but rather as descriptions of features specific to
particular embodiments of particular inventions . Certain
features that are described in this specification in the context
of separate embodiments can also be implemented in com
bination in a single embodiment . Conversely , various fea
tures that are described in the context of a single embodi
ment can also be implemented in multiple embodiments
separately or in any suitable subcombination . Moreover ,
although features may be described above as acting in
certain combinations and even initially claimed as such , one
or more features from a claimed combination can in some
cases be excised from the combination , and the claimed
combination may be directed to a subcombination or varia
tion of a subcombination .
[0127] Similarly , while operations are depicted in the
drawings in a particular order , this should not be understood
as requiring that such operations be performed in the par
ticular order shown or in sequential order , or that all illus
trated operations be performed , to achieve desirable results .
In certain circumstances , multitasking and parallel process
ing may be advantageous . Moreover , the separation of
various system components in the embodiments described
above should not be understood as requiring such separation
in all embodiments , and it should be understood that the
described program components and systems can generally
be integrated together in a single software product or pack
aged into multiple software products .
[0128] Thus , particular embodiments of the subject matter
have been described .
[0129] Other embodiments are within the scope of the
following claims . In some cases , the actions recited in the
claims can be performed in a different order and still achieve
desirable results . In addition , the processes depicted in the
accompanying figures do not necessarily require the par
ticular order shown , or sequential order , to achieve desirable
results . In certain implementations , multitasking and parallel
processing may be advantageous .
What is claimed is :
1. A direct memory access (DMA) system , comprising :
one or more hardware DMA threads , wherein each DMA

thread comprises :
a request generator configured to generate , during each

parallel memory address computation cycle , (i) m
memory addresses for a multi - dimensional tensor in
parallel and , for each memory address , (ii) a respec
tive request for a memory system to perform a
memory operation for the multi - dimensional tensor ,
wherein the request generator comprises m memory
address units , and wherein each memory address unit
comprises :
a step tracker configured to generate , for each dimen

sion of the multi - dimensional tensor , (i) a respec
tive step index value for the dimension and , based
on the respective step index value , (ii) a respective
stride offset value for the dimension ; and

a memory address computation element configured

generate , during each parallel memory address
computation cycle and based on each respective
stride offset value , a memory address for a
tensor element of the multi - dimensional tensor ;
and

transmit , to the memory system , the request to
perform the memory operation using the
memory address ;

wherein m is greater than or equal to one .
2. The DMA system of claim 1 , wherein the request

generator is configured to generate the memory addresses in
parallel during a single clock cycle and each parallel
memory computation is performed during a single clock
cycle .

3. The DMA system of claim 2 , wherein , during each
clock cycle , the memory address computation element of
each memory address unit generates a memory address for
a same or different tensor element than the memory address
computation element of each other memory address unit .

4. The DMA system of claim 1 , wherein the request
generator is configured to receive , for the multi - dimensional
tensor , a descriptor that defines , for each dimension , a
respective steps for stride value for the dimension .

5. The DMA system of claim 1 , wherein the request
generator includes m lanes that each include a respective
step tracker and a respective memory address computation
element , wherein the respective step tracker and respective
memory address computation element of each lane com
putes a corresponding memory address in parallel with each
other lane .

6. The DMA system of claim 5 , wherein :
the step trackers are configured to generate the memory

addresses for the multi - dimensional tensor based on a
loop nest that includes , for each dimension of the
multi - dimensional tensor , a respective loop for travers
ing the dimension of the multi - dimensional tensor ; and

the steps per stride value for each dimension represents a
loop bound for the respective loop for the dimension
and the step index value for each dimension represents
a loop index for the respective loop for the dimension .

7. The DMA system of claim 6 , wherein each step tracker
is configured to update the step index value for each of the
dimensions during each clock cycle .

8. The DMA system of claim 6 , wherein a combination of
the step index values for each step tracker is different from
a combination of the step index values for each other step
tracker .

9. The DMA system of claim 8 , wherein :
each step tracker comprises a step incrementer chain

comprising plurality of step incrementers each config
ured to determine a dimension memory address offset
value for a respective dimension :

a first step incrementer of the step incrementer chain
corresponding to an innermost loop of the loop nest is
configured to receive an advance amount ; and

updating the step index value for one or more of the
dimensions during each clock cycle comprises updat
ing , by the first step incrementer , the step index value
for the one or more dimensions based on the advance
amount .

10. The DMA system of claim 9 , wherein :
each of one or more second step incrementers of the step

incrementer chain corresponding to a loop in which the to :

US 2021/0255976 A1 Aug. 19 , 2021
13

innermost loop is nested is configured to receive , from
a previous step tracker in the step incrementer chain , a
wrap amount ; and

updating the step index value for one or more of the
dimensions during each clock cycle comprises updat
ing , by the second step incrementer , the step index
value for the one or more dimensions based on the wrap
amount .

11. The DMA system of claim 1 , further comprising a
progress tracker comprising a response reorder unit and a
synchronization unit .

12. The DMA system of claim 11 , wherein the response
reorder unit is configured to maintain , for each tensor , a
status of whether a memory operation for the tensor element
has been performed .

13. The DMA system of claim 11 , wherein the synchro
nization unit is configured to provide , to a processor core ,
multiple partial updates that each specify an overall status of
memory operations performed on the tensor elements of the
multi - dimensional tensor .

14. The DMA system of claim 11 , wherein :
each request comprises a unique identifier ;
the response reorder unit is configured to :

receive responses from the memory system in any
order , each response comprising the unique identifier
of the request for which the response is provided ;
and

release a set of unique identifiers for re - use by the
request generator when at least a threshold number
of consecutive unique identifiers are received in the
responses .

15. A system , comprising :
one or more processor cores ;
a memory system ; and
a DMA engine comprising one or more DMA threads ,

wherein each DMA thread comprises :
a request generator configured to generate , during each

parallel memory address computation cycle , (i) m
memory addresses for a multi - dimensional tensor in
parallel and , for each memory address , (ii) a respec
tive request for a memory system to perform a
memory operation for the multi - dimensional tensor ,
wherein the request generator comprises m memory
address units , wherein m is greater than or equal to
one , and wherein each memory address unit com
prises :
a step tracker configured to generate , for each dimen

sion of the multi - dimensional tensor , (i) a respec
tive step index value for the dimension and , based
on the respective step index value , (ii) a respective
stride offset value for the dimension ; and

a memory address computation element configured

stride offset value , a memory address for a
tensor element of the multi - dimensional tensor ;
and

transmit , to the memory system , the request to
perform the memory operation using the
memory address ; and

a progress tracker comprising a response reorder unit and
a synchronization update unit configured to provide , to
the one or more processor core , partial synchronization
updates for memory operations managed by the DMA
engine .

16. The system of claim 15 , wherein the request generator
is configured to generate the memory addresses in parallel
during a single clock cycle and each parallel memory
computation is performed during a single clock cycle .

17. The system of claim 16 , wherein , during each clock
cycle , the memory address computation element of each
memory address unit generates a memory address for a same
or different tensor element than the memory address com
putation element of each other memory address unit .

18. The system of claim 15 , wherein the request generator
is configured to receive , for the multi - dimensional tensor , a
descriptor that defines , for each dimension , a respective
steps for stride value for the dimension .

19. The system of claim 15 , wherein the request generator
includes m lanes that each include a respective step tracker
and a respective memory address computation element ,
wherein the respective step tracker and respective memory
address computation element of each lane computes a cor
responding memory address in parallel with each other lane .

20. A method performed by a DMA system , the method
comprising :

generating , by a request generator and during each par
allel memory address computation cycle , (i) m memory
addresses for a multi - dimensional tensor in parallel
and , for each memory address , (ii) a respective request
for a memory system to perform a memory operation
for the multi - dimensional tensor , wherein the request
generator comprises m memory address units , wherein
m is greater than or equal to one , and wherein each
memory address unit comprises a step tracker and a
memory address computation unit ;

generating , by the step tracker of each memory address
unit and for each dimension of the multi - dimensional
tensor , (i) a respective step index value for the dimen
sion and , based on the respective step index value , (ii)
a respective stride offset value for the dimension ;

generating , by the memory address computation element
of each memory address unit and during each parallel
memory address computation cycle , a memory address
for a tensor element of the multi - dimensional tensor
based on each respective stride offset value ; and

transmitting , to the memory system , the request to per
form the memory operation using the memory address .

to :

generate , during each parallel memory address
computation cycle and based on each respective *

