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DIRECT MEMORY ACCESS 
ARCHITECTURE WITH MULTI - LEVEL 

MULTI - STRIDING 

CROSS - REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] This application claims the benefit under 35 U.S.C. 
$ 119 ( e ) of U.S. Patent Application No. 62 / 977,062 , entitled 
“ Direct Memory Access Architecture with Multi - Level 
Multi - Striding , ” filed Feb. 14 , 2020. The disclosure of the 
foregoing application is incorporated herein by reference in 
its entirety for all purposes . 

BACKGROUND 

[ 0002 ] Direct memory access ( DMA ) is a capability that 
enables devices or subsystems to access memory indepen 
dent of the processor . This frees up the processor from 
involvement with the data transfer , making the processor 
available to perform other operations . DMA can be used to 
offload expensive memory operations from the processor , 
such as large memory transfer operations and scatter - gather 
operations . 

SUMMARY 

[ 0003 ] This specification describes technologies relating 
to DMA architectures that are capable of performing multi 
level multi - striding and determining multiple memory 
addresses in parallel , e.g. , during a single clock cycle . 
[ 0004 ] In general , one innovative aspect of the subject 
matter described in this specification can be embodied in a 
direct memory access ( DMA ) system that includes one or 
more hardware DMA threads . Each DMA thread includes a 
request generator configured to generate , during each par 
allel memory address computation cycle , ( i ) m memory 
addresses for a multi - dimensional tensor in parallel and , for 
each memory address , ( ii ) a respective request for a memory 
system to perform a memory operation for the multi - dimen 
sional tensor . The request enerator includes m memory 
address units . Each memory address unit includes a step 
tracker configured to generate , for each dimension of the 
multi - dimensional tensor , ( i ) a respective step index value 
for the dimension and , based on the respective step index 
value , ( ii ) a respective stride offset value for the dimension 
and a memory address computation element configured to 
generate , during each parallel memory address computation 
cycle and based on each respective stride offset value , a 
memory address for a tensor element of the multi - dimen 
sional tensor and transmit , to the memory system , the 
request to perform the memory operation using the memory 
address , where m is greater than or equal to one . Other 
implementations of this aspect include corresponding appa 
ratus and methods . 
[ 0005 ] These and other implementations can each option 
ally include one or more of the following features . In some 
aspects , the request generator is configured to generate the 
memory addresses in parallel during a single clock cycle and 
each parallel memory computation is performed during a 
single clock cycle . During each clock cycle , the memory 
address computation element of each memory address unit 
generates a memory address for a same or different tensor 
element than the memory address computation element of 
each other memory address unit . 

[ 0006 ] In some aspects , the request generator is configured 
to receive , for the multi - dimensional tensor , a descriptor that 
defines , for each dimension , a respective steps for stride 
value for the dimension . The request generator can include 
m lanes that each include a respective step tracker and a 
respective memory address computation element . The 
respective step tracker and respective memory address com 
putation element of each lane computes a corresponding 
memory address in parallel with each other lane . The step 
trackers can be configured to generate the memory addresses 
for the multi - dimensional tensor based on a loop nest that 
includes , for each dimension of the multi - dimensional ten 
sor , a respective loop for traversing the dimension of the 
multi - dimensional tensor . The steps per stride value for each 
dimension represents a loop bound for the respective loop 
for the dimension and the step index value for each dimen 
sion represents a loop index for the respective loop for the 
dimension . 
[ 0007 ] In some aspects , each step tracker is configured to 
update the step index value for each of the dimensions 
during each clock cycle . A combination of the step index 
values for each step tracker can be different from a combi 
nation of the step index values for each other step tracker . 
Each step tracker can include a step incrementer chain that 
includes multiple step incrementers each configured to 
determine a dimension memory address offset value for a 
respective dimension . A first step incrementer of the step 
incrementer chain corresponding to an innermost loop of the 
loop nest can be configured to receive an advance amount . 
Updating the step index value for one or more of the 
dimensions during each clock cycle can include updating , by 
the first step incrementer , the step index value for the one or 
more dimensions based on the advance amount . 
[ 0008 ] In some aspects , each of one or more second step 
incrementers of the step incrementer chain corresponding to 
a loop in which the innermost loop is nested is configured to 
receive , from a previous step tracker in the step incrementer 
chain , a wrap amount . Updating the step index value for one 
or more of the dimensions during each clock cycle can 
include updating , by the second step incrementer , the step 
index value for the one or more dimensions based on the 
wrap amount . 
[ 0009 ] Some aspects can include a progress tracker that 
includes a response reorder unit and a synchronization unit . 
The response reorder unit can be configured to maintain , for 
each tensor , a status of whether a memory operation for the 
tensor element has been performed . The synchronization 
unit can be configured to provide , to a processor core , 
multiple partial updates that each specify an overall status of 
memory operations performed on the tensor elements of the 
multi - dimensional tensor . 
[ 0010 ] In some aspects , each request includes a unique 
identifier . The response reorder unit can be configured to 
receive responses from the memory system in any order . 
Each response can include the unique identifier of the 
request for which the response is provided . The response 
reorder unit can be configured to release a set of unique 
identifiers for re - use by the request generator when at least 
a threshold number of consecutive unique identifiers are 
received in the responses . 
[ 0011 ] In general , another innovative aspect of the subject 
matter described in this specification can be embodied in a 
system that includes one or more processor cores , a memory 
system , and a DMA engine that includes one or more DMA 
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threads . Each DMA thread can include a request generator 
configured to generate , during each parallel memory address 
computation cycle , ( i ) m memory addresses for a multi 
dimensional tensor in parallel and , for each memory address , 
( ii ) a respective request for a memory system to perform a 
memory operation for the multi - dimensional tensor , wherein 
the request generator comprises m memory address units , 
where m is greater than or equal to one . Each memory 
address unit can include a step tracker configured to gener 
ate , for each dimension of the multi - dimensional tensor , ( i ) 
a respective step index value for the dimension and , based 
on the respective step index value , ( ii ) a respective stride 
offset value for the dimension and a memory address com 
putation element configured to generate , during each parallel 
memory address computation cycle and based on each 
respective stride offset value , a memory address for a tensor 
element of the multi - dimensional tensor and transmit , to the 
memory system , the request to perform the memory opera 
tion using the memory address . Each DMA thread can 
include a progress tracker that includes a response reorder 
unit and a synchronization update unit configured to pro 
vide , to the one or more processor core , partial synchroni 
zation updates for memory operations managed by the DMA 
engine . Other implementations of this aspect include corre 
sponding apparatus and methods . 
[ 0012 ] These and other implementations can each option 
ally include one or more of the following features . In some 
aspects , the request generator is configured to generate the 
memory addresses in parallel during a single clock cycle and 
each parallel memory computation is performed during a 
single clock cycle . 
[ 0013 ] During each clock cycle , the memory address com 
putation element of each memory address unit can generate 
a memory address for a same or different tensor element than 
the memory address computation element of each other 
memory address unit . The request generator can be config 
ured to receive , for the multi - dimensional tensor , a descrip 
tor that defines , for each dimension , a respective steps for 
stride value for the dimension . The request generator can 
include m lanes that each include a respective step tracker 
and a respective memory address computation element , 
wherein the respective step tracker and respective memory 
address computation element of each lane computes a cor 
responding memory address in parallel with each other lane . 
[ 0014 ] In general , another innovative aspect of the subject 
matter described in this specification can be embodied in a 
method performed by a DMA system . The method includes 
generating , by a request generator and during each parallel 
memory address computation cycle , ( i ) m memory addresses 
for a multi - dimensional tensor in parallel and , for each 
memory address , ( ii ) a respective request for a memory 
system to perform a memory operation for the multi - dimen 
sional tensor , wherein the request generator comprises m 
memory address units , wherein m is greater than or equal to 
one , and wherein each memory address unit comprises a step 
tracker and a memory address computation unit ; generating , 
by the step tracker of each memory address unit and for each 
dimension of the multi - dimensional tensor , ( i ) a respective 
step index value for the dimension and , based on the 
respective step index value , ( ii ) a respective stride offset 
value for the dimension ; generating , by the memory address 
computation element of each memory address unit and 
during each parallel memory address computation cycle , a 
memory address for a tensor element of the multi - dimen 

sional tensor based on each respective stride offset value ; 
and transmitting , to the memory system , the request to 
perform the memory operation using the memory address . 
[ 0015 ] The subject matter described in this specification 
can be implemented in particular embodiments so as to 
realize one or more of the following advantages . The DMA 
architectures described in this document enable the genera 
tion of multiple ( m ) memory addresses for a multi - dimen 
sional tensor in parallel , e.g. , per clock cycle , which pro 
vides faster memory address generation and higher memory 
throughput . The DMA architectures can include multiple 
lanes that each have a step tracker that performs multi 
striding techniques to compute memory addresses for tensor 
elements in parallel based on a loop nest for the multi 
dimensional tensor . The techniques used by request genera 
tors of the DMA architectures enable the multiple step 
trackers to operate in parallel using different step index 
values for the multiple dimensions of the tensor to generate 
addresses for different tensor elements in parallel during a 
clock cycle and independent of each other step tracker . Each 
step tracker can update its step index values during each 
clock cycle in preparation for determining the memory 
address for its next tensor element . 
[ 0016 ] The DMA architectures can also include progress 
trackers that provide partial synchronization updates to a 
processor core that will consume data stored in the memory 
at the determined memory addresses . This enables the 
processor core to begin consuming data prior to an entire 
DMA memory transaction being completed , thereby reduc 
ing the latency imposed on the processor core by memory 
transfers and increasing the overall efficiency of the proces 
sor's computations . The progress trackers can include 
response reorder units that can receive multiple responses at 
a time and in any order from memories that can handle and 
respond to the generated requests out of order . As the size of 
the response reorder unit is limited , the response reorder unit 
can release identifiers for requests when responses for at 
least a threshold number of requests have been received . 
This enables the request generator to use the released 
identifiers to continue issuing memory requests without 
waiting for responses to all of the maximum number of 
requests , thereby increasing the speed and efficiency of 
memory transfers . 
[ 0017 ] Various features and advantages of the foregoing 
subject matter is described below with respect to the figures . 
Additional features and advantages are apparent from the 
subject matter described herein and the claims . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0018 ] FIG . 1 is a diagram of an example environment in 
which a DMA thread generates and tracks progress of 
memory operations . 
[ 0019 ] FIG . 2A is a diagram of an example request gen 
erator . 
[ 0020 ] FIG . 2B depicts example pseudocode for determin 
ing memory addresses . 
[ 0021 ] FIG . 3 is a diagram of an example step tracker . 
[ 0022 ] FIG . 4 is a diagram of an example step incrementer 
chain . 
[ 0023 ] FIG . 5 is a diagram of an example progress tracker . 
[ 0024 ] FIG . 6 is a diagram of an example response reorder 
unit . 
[ 0025 ] FIG . 7 is a flow diagram that illustrates an example 
process for generating requests for memory operations . 
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[ 0026 ] FIG . 8 is a flow diagram that illustrates an example 
process for tracking the progress of memory operations . 
[ 0027 ] Like reference numbers and designations in the 
various drawings indicate like elements . 

DETAILED DESCRIPTION 

[ 0028 ] In general , this document describes DMA archi 
tectures that are capable of performing multi - level multi 
striding and determining multiple memory addresses in 
parallel , e.g. , during and within a single clock cycle . A chip 
can include one or more DMA engines that offload the 
memory transfer operations from the processor core ( s ) of the 
chip . Each DMA engine can include one or more DMA 
threads . Each DMA thread is a hardware unit that manages 
the execution of DMA transactions on behalf of the core ( s ) . 
The clock cycle can be the time required for the execution 
of one operation by a DMA engine or a core . 
[ 0029 ] The example DMA architectures illustrated in 
FIGS . 1-6 and described below provide a design that can 
support up to four tensor dimensions and up to four source 
and four destination memory addresses per clock cycle . 
However , the DMA architectures do not specifically apply to 
just four dimensions or four addresses per cycle . Similar 
architectures can be used for other numbers of dimensions 
and addresses per cycle . In addition , the number of 
addresses per cycle can differ from the number of dimen 
sions of the tensors for which addresses will be determined . 
For example , a DMA thread can include five lanes to 
generate five addresses per cycle , while the hardware is 
configured to compute addresses for tensors having up to 
four dimensions , up to 10 dimensions , or another maximum 
number of dimensions . That is , the architecture is param 
eterizable and the choice of settings depends on the area / 
frequency goals for the design . 
[ 0030 ] FIG . 1 is a diagram of an example environment 100 
in which a DMA thread 120 generates and tracks progress of 
memory operations . The DMA thread 120 can generate and 
track the progress of the memory operations as part of a 
transaction that is requested on behalf of a processor core . 
The DMA thread 120 is a hardware unit that can 
a DMA engine that includes the DMA thread 120 and 
optionally one or more additional DMA threads . The DMA 
thread 120 can manage DMA transactions , such as scatter 
gather and other memory transfer operations , for one or 
more processor cores , including the core 110. For example , 
the DMA thread 120 can orchestrate the transfer of multi 
dimensional tensors between different memories of a 
memory system on a chip that includes the core 110 and the 
DMA thread 120. The DMA thread 120 orchestrates the data 
movement by sending requests ( commands ) into the 
memory system and tracks completion of those requests so 
that it can synchronize progress with the core that requested 
the transaction . Once the read / write requests / commands are 
in the memory system , it can service each request indepen 
dently without regard for request ordering . The DMA thread 
120 handles the ordering of the requests / responses and 
synchronization with the core . Offloading these memory 
operations to the DMA thread 120 frees up compute cycles 
on the core 110 for other tasks , e.g. , performing machine 
learning computations , reshaping tensors , etc. 
[ 0031 ] The core 110 can request a DMA transaction by 
sending a descriptor 112 to the DMA thread 120. Each DMA 
transaction can include one or more memory transfer opera 
tions . The descriptor 112 includes information about the 

DMA transaction . For example , the descriptor 112 can 
include information specifying source memory 152 of a 
memory system 150 from which data will be read ( e.g. , the 
memory address ( es ) of the source memory 152 ) , destination 
memory 154 to which the data will be written ( e.g. , the 
memory address ( es ) of the destination memory 154 ) , the 
size and shape ( e.g. , the dimensions ) of a source tensor for 
which tensor elements are stored in the source memory 152 , 
and a size and shape of a destination tensor for which tensor 
elements will be stored in the destination memory 154. A 
tensor element is a piece of data in the tensor that corre 
sponds to a particular indexed location in the tensor . 
[ 0032 ] The size and shape of the source tensor can be the 
same or different from the size and shape of the destination 
tensor . For example , the size and shape can be different if the 
tensor is being reshaped by the core 110. The descriptor 112 
can define the size and shape of each tensor using a 
steps - per - stride value for each dimension of the tensor . In a 
for loop , the step size is the size of the increment for each 
iteration of the loop and the steps - per - stride is the total 
number of steps before the loop resets , e.g. , the loop bound 
for the loop . 
[ 0033 ] For example , the steps - per - stride for a dimension 
of a tensor can be equal to the number of tensor elements 
across that dimension . In particular , a 8x6x4x2 four dimen 
sional tensor can have a steps - per - stride of 8 for a first 
dimension , a steps - per - stride of 6 for a second dimension , a 
steps - per - stride of 4 for a third dimension , and steps - per 
stride of 2 for a fourth dimension . As described in more 
detail below , the steps - per - stride can be used to traverse each 
dimension of the tensor and compute memory addresses for 
the tensor elements . 
[ 0034 ] The descriptor 112 can also include a stride dimen 
sion offset value for each dimension . These stride dimension 
offset values ( also referred to as dimension offset values ) are 
used to determine memory addresses for tensor elements , as 
described below . The dimension offsets are stride distances . 
At each step of the process along a tensor dimension , the 
DMA thread 120 “ hops ” the memory address by the stride 
dimension offset value . The descriptor 112 can include , for 
the source tensor , a stride dimension offset value for each 
dimension of the source tensor . The descriptor 112 can also 
include , for the destination tensor , a stride dimension offset 
value for each dimension of the destination tensor . 
[ 0035 ] The DMA thread 120 includes a descriptor queue 
122 that stores descriptors 112. For example , the DMA 
thread 120 can execute multiple DMA threads sequentially 
based on the descriptors 112 received and stored in the 
descriptor queue 122. In some implementations , the descrip 
tor queue 122 is a first - in , first - out ( FIFO ) queue such that 
the DMA thread 120 executes DMA transactions in the order 
in which the descriptors 112 for the DMA transactions are 
received . The execution of DMA transactions is fully pipe 
lined and can be implemented in a way that performs 
out - of - order operations , but appears to the processor to 
execute in program order . 
[ 0036 ] The DMA thread 120 also includes a descriptor 
splitter 124. The descriptor splitter 124 can extract , from a 
descriptor 112 , the information used by a source subthread 
130 and the information used by a destination subthread 140 
and provide the appropriate information to each subthread 
130 and 140 . 
[ 0037 ] In general , the source subthread 130 generates read 
requests to read data from source memory 152 , sends the 

part of 
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read requests to the memory system 150 , tracks the progress 
of the read operations , and synchronizes the core 110 with 
the progress of the read operations . Similarly , the destination 
thread 140 generates write requests to write data to desti 
nation memory 154 , sends the write requests to the memory 
system 150 , tracks the progress of the write operations , and 
synchronizes the core 110 with the progress of the write 
operations . The memory system 150 can be the main 
memory for the core 110 or for a chip that includes the core 
110 , e.g. , random access memory ( RAM ) for the core 110 or 
chip . The memory system implements the actual memory 
interconnect so that data that is read for each source memory 
read request gets paired with the write request to the 
destination memory . The data never passes through the 
DMA thread ( request addresses are sent out and responses 
are received but those responses and requests carry no 
memory data ) . 
[ 0038 ] The source subthread 130 includes a request gen 
erator 132 that generates the read requests based on the 
descriptor 112. As described in more detail below , the 
request generator 132 can generate multiple memory 
addresses in parallel , e.g. , per clock cycle , and generate a 
read request for each memory address . For example , the 
request generator 132 can generate a respective memory 
address for each of multiple tensor elements during a single 
clock cycle of the core 110 as it traverses a multi - dimen 
sional tensor . Each read request can include a request 
identifier “ request ID " ) , the memory address from which 
data is to be read , a memory opcode . The request IDs can be 
sequence numbers or tags that are used to associate the 
requests with responses since the responses can be received 
out of order , as described below . The memory opcode 
indicates the memory operation , e.g. , whether the request is 
for a read , write , memset , or another operation targeting the 
memory address of the request . 
[ 0039 ] The source subthread 130 also includes a progress 
tracker 134 that tracks the progress of the read operations 
specified by the read requests . For example , the memory 
system 150 can send , to the progress tracker 134 , read 
responses to signal that the read operation has been com 
pleted . Each read response can include the request ID of the 
read request for which the response is being sent . In this 
way , the progress tracker 134 can use the request IDs to track 
the progress of the DMA transactions . 
[ 0040 ] The destination subthread 140 includes a request 
generator 142 that generates the write requests based on the 
descriptor 112. As described in more detail below , the 
request generator 142 can generate multiple memory 
addresses in parallel , e.g. , per clock cycle , and generate a 
write request for each memory address . For example , the 
request generator 142 can generate a respective memory 
address for each of multiple tensor elements during a single 
clock cycle of the core 110 as it traverses a multi - dimen 
sional tensor . Each write request can include a request ID 
and specify the memory address to which data is to be 
written . 

[ 0041 ] The destination subthread 140 also includes a prog 
ress tracker 134 that tracks the progress of the write opera 
tions specified by the write requests . For example , the 
memory system 150 can send , to the progress tracker 144 , 
write responses to signal that the write operation has been 
completed . Each write response can include the request ID 
of the write request for which the response is being sent . In 

this way , the progress tracker 144 can use the request IDs to 
track the progress of the DMA transactions . 
[ 0042 ] The progress trackers 134 and 144 can send syn 
chronization messages 115 and 116 , respectively , to the core 
110 to update the core 110 on the progress of the DMA 
transaction corresponding to the descriptor 112. The syn 
chronization messages 115 and 116 can specify a level of 
completion ( e.g. , a percentage or total number of memory 
operations completed ) and / or the request IDs for which a 
response has been received . 
[ 0043 ] As described below , the progress trackers 134 and 
144 can send synchronization messages 115 and 116 that 
provide partial , or incomplete , updates on the progress of the 
DMA transaction . For example , each progress tracker 134 
and 144 can be configured to send a synchronization mes 
sage 115 and 116 each time a specified number , e.g. , a 
threshold number , of responses have been received for the 
DMA transaction . In a particular example , each progress 
tracker 134 and 144 can be configured to send a synchro 
nization message 115 and 116 each time responses have 
been received for a continuous sequence of at least a 
threshold number of request IDs . As the core 110 can know 
the order in which the memory operations are being per 
formed ( and therefore the order in which the tensor elements 
are being moved ) , the core 110 can begin processing the data 
that has been transferred based on these partial updates 
without having to wait for the entire set of DMA transactions 
to be completed . 
[ 0044 ] Using separate subthreads for the read and write 
operations enables higher throughput . For example , if each 
subthread 130 and 140 can generate a particular number of 
requests in parallel per clock cycle , e.g. , four requests per 
clock cycle , then the total number of requests generated by 
the two subthreads 130 and 140 is double the particular 
number , e.g. , eight requests . 
[ 0045 ] In some cases , multiple DMA threads can be used 
to execute a DMA transaction . For example , if the band 
width of the memory is sufficient to handle more requests 
per clock cycle than a single DMA thread can generate , 
multiple DMA threads can be used to generate the requests . 
If multiple DMA threads are used to transfer data of a 
multi - dimensional tensor , each DMA thread can receive a 
descriptor for a portion of the multi - dimensional tensor , e.g. , 
a slice of the tensor . The descriptor can specify the size and 
shape of the slice of the tensor and the memory addresses , 
similar to the descriptor for a full tensor . 
[ 0046 ] FIG . 2A is a diagram of an example request gen 
erator 200 , which can be used to implement each of the 
request generators 132 and 142 of FIG . 1. In this example , 
the request generator 200 is configured for implementations 
in which there are up to four tensor dimensions and up to 
four memory addresses can be generated per clock cycle . 
[ 0047 ] In general , the request regenerator 200 can deter 
mine memory addresses for tensor elements in a multi 
dimensional tensor or other multi - dimensional data structure 
( referred to herein as a tensor for brevity ) . The request 
generator 200 can determine the memory addresses so that 
data of the tensor can be read from memory and / or written 
to memory . The request generator 200 can compute a 
memory address for a tensor element based on step index 
values of the tensor element that defines the location of the 
tensor element within the tensor . The example request 
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generator 200 is implemented with a five stage design with 
pipeline registers 220 , 230 , 240 , 260 , and 270 between 
adjacent stages . 
[ 0048 ] To determine the memory addresses , the request 
generator 200 can traverse each dimension by stepping 
through each step index value for each dimension . For 
example , if a dimension includes ten elements , the request 
generator 200 can step through the step index values in order 
from one to ten . Conceptually , this can be performed using 
a loop nest that includes a loop for each dimension of the 
tensor . In such an example , a dimension of the tensor can be 
traversed using its loop by incrementing the step index value 
for the loop for each iteration of the loop until a loop bound 
equal to the number of elements in the loop is reached . When 
the loop bound is reached , a next outer loop is incremented 
and the current loop resets to the first step index value 
corresponding to the first element in the dimension . The 
innermost loop can include a memory address computation 
to determine the memory address for the tensor element at 
the location within the tensor that corresponds to the step 
index values of the four loops in the loop nest . Example 
pseudocode 280 for determining memory addresses using 
four loops is shown in FIG . 2B . 
[ 0049 ] Referring to FIG . 2B , the pseudocode 280 includes 
four loops 281-284 that are used to traverse the four dimen 
sions of a tensor . The illustrated pseudocode 280 describes 
half of a transaction ( either the source - side reads or desti 
nation - side writes ) . The same or similar pseudocode can be 
independently instantiated twice for the full transaction . In 
the pseudocode 280 , the loop bound ( steps_per_stride ) for 
each dimension is the same for both the source - side and 
destination - side of the transfer but the stride offset values 
( stride_dimension_offset_value_i ) can be different . That is , 
steps_per_stride_0 is the same in the pseudocode for the 
source - side and the destination - side , but stride_dimension_ 
offset_value_0 in the source - side pseudocode may be dif 
ferent from stride_dimension_offset_value_0 in the destina 
tion pseudocode . 
[ 0050 ] The outermost loop 281 corresponds to one of the 
dimensions and includes a step index value i , and loop 
bound of steps_per_stride_0 . The loop bound steps_per_ 
stride_0 can be equal to the number of elements in the 
dimension corresponding to the outermost loop 281. Simi 
larly , the loop 282 corresponds to one of the dimensions and 
includes a step index value i? and a loop bound of steps_ 
per_stride_1 ( which can be equal to the number of elements 
in the dimension corresponding to the loop 282 ) and the 
loops 283 corresponds to one of the dimensions and includes 
a step index value in and a loop bound of steps_per_stride_2 
( which can be equal to the number of elements in the 
dimension corresponding to the loop 283 ) . 
[ 0051 ] The innermost loop 284 also corresponds to one of 
the dimensions and includes a step index value iz and a loop 
bound of steps_per_stride_3 ( which can be equal to the 
number of elements in the dimension corresponding to the 
innermost loop 284 ) . For each iteration of the innermost 
loop , a dimension memory address offset value would be 
computed for each dimension of the tensor using functions 
285 and these dimension memory address offset values are 
used to determine a memory address for the tensor element 
corresponding to the step index values i , -iz using function 
286. The dimension memory address offset value ( destina 
tion_memory_address_offset_0 ) for the dimension corre 
sponding to the outermost loop 281 is equal to the product 

of the step index value i , for the loop and a stride dimension 
offset value ( stride_dimension_offset_value_0 ) for the 
dimension . A dimension memory address offset value is 
determined for each other dimension in a similar manner , as 
shown in FIG . 2B . The stride dimension offset values for the 
dimensions can be included in a descriptor , as described 
above . 

[ 0052 ] The memory address for the tensor element can 
then be computed based on a base memory address and the 
dimension memory address offset value for each dimension 
of the tensor . For example , the memory address for a tensor 
element can be based on , e.g. , equal to , the sum of the base 
memory address and the dimension memory address offset 
value for the dimensions , as shown in FIG . 2B . 
[ 0053 ] Returning to FIG . 2A , the request generator 200 
can perform similar memory address computations in par 
allel , e.g. , without actually iterating the loops . In this 
example the request generator 200 includes four lanes 
201-204 for computing four memory addresses in parallel , 
e.g. , within one clock cycle . In other examples , two or more 
lanes can be used to compute two or more memory addresses 
in parallel , e.g. , three lanes for three memory address , five 
lanes for five memory addresses , and so on . That is , the 
request generator 200 can include m lanes to compute m 
memory addresses in parallel , where m is greater than or 
equal to one . The request generator 200 can compute m 
memory addresses during a parallel memory address com 
putation cycle , which can have a duration that is less than or 
equal to a single clock cycle . 
[ 0054 ] The number of lanes can be the same as , or 
different from , the number of dimensions of the tensors . For 
example , the request generator 200 can be used to compute 
memory addresses for tensors having different numbers of 
dimensions , based on the information included in a descrip 
tor 112. For example , the request generator 200 having four 
lanes can compute up to four memory addresses per cycle 
for a three - dimensional tensor using up to all four lanes . The 
same request generator 200 can also compute up to four 
addresses per cycle for a one , two , or four - dimensional 
tensor using up to all four lanes . 
[ 0055 ] Performing such computations in parallel based on 
the multi - level multi - striding ( four level multi - striding in 
this example ) can be difficult as each lane 201-204 has to 
compute a memory address for a different tensor element 
than each other lane and each lane operates independently of 
each other lane . As each lane 201-204 computes a memory 
address in parallel , e.g. , at the same time , one lane cannot 
wait for the other lane to complete and then iterate one or 
more loops to determine the memory address for the next 
tensor element . Instead , each lane has to be able to determine 
its next tensor element ( e.g. , the step index values for its next 
tensor element ) and determine the memory address for that 
tensor element without waiting on another lane . 
[ 0056 ] The request generator 200 includes , for each lane 
201-204 ( and therefore for each parallel memory address 
computation ) , a memory address unit 242-248 . Each 
memory address unit 242-248 includes a respective step 
tracker 222-228 and a respective memory address compu 
tation element 252-258 . In general , the step trackers 222-228 
are configured to step through the tensor elements of the 
tensor and determine the dimension memory address offset 
values for the tensor elements . The memory address com 
putation elements 252-258 are configured to determine the 
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memory addresses for the tensor elements using the dimen 
sion memory address offset values received from the step 
trackers 222-228 . 
[ 0057 ] The request generator 200 includes computation 
elements 210 that pre - compute values for the step trackers 
222-228 . For example , the computation elements 210 can 
precompute various step comparison values that can be used 
by the step trackers 222-228 to determine the next step index 
values for a next tensor element for which a memory address 
will be determined . As described below , a comparison of the 
current step index value to the step comparison values can 
be used along with other criteria to determine the next step 
index value . The computation elements 210 can precompute 
step comparison values for each dimension of the tensor . 
These step comparison values can be , for example , the 
steps - per - stride for the dimension minus one , the steps - per 
stride for the dimension minus two , the steps - per - stride for 
the dimension minus three , and so on depending on the 
number of dimensions of the tensor for the current descriptor 
112 for which the request generator 200 is generating 
memory addresses and sending requests . The computation 
elements 210 are optional as are the pre - computed values . 
Pre - computing the values can help improve critical path 
timing on the next clock cycle . 
[ 0058 ] The computation elements 210 can include a set of 
hardware adders that precompute the step comparison values 
and store the step comparison values in a register 220 ( or 
other appropriate data storage element ) . The computation 
elements 210 can compute the comparison offset values 
based on the steps - per - stride values received in a descriptor . 
The descriptor can include a steps - per - stride value for one or 
more of the dimensions . In this example , the descriptor can 
include the steps - per - stride value for dimensions 1-3 ( sps_1 
to sps_3 ) , but not for dimension 0 ( e.g. , the dimension 
corresponding to the outermost loop ) . For example , if the 
steps - per - stride variables are represented using 32 - bit signed 
integers , then the steps - per - stride value for dimension 0 can 
be implied to be the maximum integer value , e.g. , the 
maximum integer value that can be stored in a signed 32 - bit 
integer . In another example , the steps - per - stride value can be 
included in the descriptor , but not shown in FIG . 2A . 
[ 0059 ] As the steps - per - stride values can vary based on the 
size and shape of the tensor , the computation elements 210 
can precompute the step comparison values for each descrip 
tor and store the step comparison values in the register 220 . 
The descriptors can also be stored in the register 220 . 
[ 0060 ] The request generator 200 also includes a finite 
state machine ( FSM ) 232. The FSM 232 can initialize and 
control the step trackers 222-228 based on information from 
the descriptor 112. For example , the FSM 232 can obtain the 
descriptor information from a register 230 and determine , 
based on the descriptor information , the number of requests 
that will be sent for a DMA transaction defined by the 
descriptor . This number can be the number of tensor ele 
ments in the tensor . The FSM 232 can track the number of 
remaining requests to be sent and send , to each step tracker 
222-224 an advance amount that is based on this number of 
remaining requests . The advance amount defines the number 
of memory addresses to be computed during the next cycle 
of memory address computations performed by the memory 
address computation elements 252-258 . 
[ 0061 ] For example , during the course of executing a 
DMA transaction using all four lanes 201-204 , the advance 
amount may be equal to four . However , if the total number 

of memory addresses to be computed for the DMA trans 
action is less than four , the advance amount for the last cycle 
will be less than four . For example , if the total number of 
memory addresses is 18 , the FSM 232 would provide an 
advance amount of four to each step tracker 222-228 for the 
first four cycles , and then provide an advance amount of two 
for the final cycle . 
[ 0062 ] The FSM 232 can also stall the step trackers 232 . 
For example , as described below , the progress trackers 134 
and 144 may only track the progress of a particular number 
of requests at one time . The request generator 200 can stall 
itself , e.g. , stalling the step trackers 232 , when it runs out of 
allocated request IDs . The progress trackers 134 and 144 can 
return request ID credits when request IDs are freed and can 
be re - allocated , e.g. , when a response is received for at least 
a threshold number of sequential request IDs as described 
below . 
[ 0063 ] The request generators 132 and 142 can also stall 
due to external interconnect backpressure ( i.e. , the memory 
system cannot yet accept new requests ) . In some implemen 
tations , each DMA thread 120 can be independently 
throttled using a hardware FSM that is configurable by 
software . Software can set a target request generation band 
width for each DMA thread 120 over a configurable sam 
pling window and the DMA thread 120 will automatically 
stall its pipeline once the allocated bandwidth has been 
reached . Thus , the DMA thread 120 can be stalled in three 
different circumstances : memory system network backpres 
sure , request bandwidth throttling , and exhausted request ID 
allocation ( waiting on progress tracker to return credit ) . 
[ 0064 ] Each step tracker 222-228 uses the advance amount 
received from the FSM 232 , a current step index value for 
each dimension of the tensor , and the steps - per - stride value 
for each dimension to determine a next step index value for 
each dimension . Each step tracker 222-228 also determines 
a dimension memory address offset value for each dimen 
sion based on the next step index value for the dimension 
and the stride dimension offset value for the dimension . 
Each step tracker 222-228 outputs the determined dimension 
memory address offset values to its corresponding memory 
address computation element 252-258 via a register 240. As 
described below , the memory address computation elements 
252-258 determine the memory address for a tensor element 
based on the received dimension memory address offset 
values . 
[ 0065 ] The step trackers 222-228 determine the dimension 
memory address offset values for different tensor elements 
than each other . For example , consider a 2x2x2x2 tensor ( or 
other shape tensor ) that includes 16 total tensor elements . As 
the four lanes 201-204 generate four requests per cycle , each 
step tracker 222-228 would determine the dimension 
memory address offset values for a total of four of the 16 
tensor elements . For example , the step tracker 222 can 
determine the dimension memory address offset values for a 
first , fifth , ninth , and thirteenth tensor elements , while the 
step tracker 224 determines the dimension memory address 
offset values for a second , sixth , tenth , and fourteenth tensor 
elements , and so on . 
[ 0066 ] The step trackers 222-228 can determine their 
respective dimension memory address offset values in par 
allel with each other and independent of each other . That is , 
in some implementations , the step trackers 222-228 do not 
communicate any data to any other step tracker 222-228 . 
Instead , each step tracker 222-228 can be configured to 
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determine its next tensor element ( e.g. , the step index values 
for its next tensor element ) based on the initialization of the 
step tracker 222-228 and the advance amount received from 
the FSM 232 , as described in more detail below . In this way , 
neither step tracker 222-228 has to wait on another step 
tracker 222-228 and the parallel computations can be com 
pleted by all step trackers 222-228 in a single clock cycle . 
Example architectures of step trackers and techniques for 
determining the dimension memory address offset values are 
illustrated in FIGS . 3 , 4 , and 7 and described below . 
[ 0067 ] Each memory address computation element 252 
258 includes a first summation element 262A - 268A and a 
second summation element 262B - 268B . Each first summa 
tion element 262A - 268A can determine a sum of the dimen 
sion memory address offset values received from its step 
tracker 222-228 for each parallel memory address compu 
tation cycle . For example , the summation element 262A can 
determine the sum of the four dimension memory address 
offset values generated by the step tracker 222 for a given 
tensor element . The first summation elements 262A - 268A 
can be implemented as hardware adders . 
[ 0068 ] The second summation elements 262B - 268B , 
which can also be implemented as hardware adders , can 
determine a memory address for a tensor element based on 
a base address and the sum of the dimension memory 
address offset values computed by its corresponding first 
summation element 262A - 268A . For example , summation 
element 262B can determine a memory address for a given 
tensor element by adding the base address to the sum of the 
four dimension memory address offset values generated by 
the step tracker 222 for the given tensor element . 
[ 0069 ] The second summation elements 262B - 268B can 
output their memory addresses to a register 270. A request 
transmitter 290 can generate a request for each memory 
address and send the requests to a memory system , e.g. , the 
memory system 150 of FIG . 1. A request can include a 
request ID and the memory address . The request IDs can be 
allocated to requests in order . For example , if the DMA 
thread is configured to have 500 requests outstanding at a 
time , the request IDs can start at 0 or 1 and go up to 499 or 
500 , respectively . If 0-499 are used , the first request can 
include request ID 0 , the second request can include request 
ID 1 , and so on . The request transmitter 299 can include a 
counter that determines the request ID for each request . 
[ 0070 ] The four lanes 201-204 can each generate a 
memory address for a tensor element in parallel during a 
single clock cycle . The FSM 232 can control the step 
trackers 222-228 of the lanes 201-204 to iterate through each 
tensor element of the tensor until a memory address is 
computed for each tensor element in the tensor . When 
finished issuing requests for a descriptor , the FSM 232 can 
move to the next descriptor . However , the FSM 232 does not 
have to wait for responses to all of the requests to be 
received . If there are at least a threshold number of sequen 
tial request IDs available ( e.g. , for which responses have 
been received ) , the progress tracker 132 or 134 can notify 
the request generator 200 so that the request generator 200 
can issue requests for the next descriptor using those avail 
able request IDs . This further increases the throughput and 
efficiency of the DMA thread . 
[ 0071 ] As described above , the request generators 132 and 
134 of both DMA subthreads 132 and 134 can be imple 
mented using the request generator 200. In this example , 

each subthread 132 and 134 would be capable of sending 
four requests per clock cycle . 
[ 0072 ] FIG . 3 is a diagram of an example step tracker 300 , 
which can be used to implement each of the step trackers 
222-228 of FIG . 2A . In this example , the step tracker 300 
includes two incrementer chains 322 and 324 that can 
perform the same or similar functions to generate step index 
values and dimension memory address offset values for 
tensor elements . This allows for one of the step incrementer 
chains to actively determine dimension memory address 
offset values for a current descriptor begin processed by the 
DMA thread , while the other step incrementer chain is 
initialized for the next descriptor to be processed by the 
DMA thread . 

[ 0073 ] For example , the step incrementer chain 324 can be 
actively determining the dimension memory address offset 
values for a current descriptor . The step incrementer chain 
324 can use an advance amount received from a FSM , e.g. , 
the FSM 232 of FIG . 2 , and stride parameters ( as defined by 
the descriptor ) to determine the dimension memory address 
offset values for the current descriptor . While the step 
incrementer chain 324 is active , the FSM can initialize the 
step incrementer chain 322 , as described below with refer 
ence to FIG . 4 . 

[ 0074 ] While the last cycle of memory addresses is 
requested for the current descriptor , the FSM can switch to 
the initialized step incrementer chain 322 and send the step 
incrementer chain 322 an initialization amount . The step 
incrementer chain 322 can generate a first set of dimension 
memory address offset values on the very next clock cycle 
after the clock cycle in which the step incrementer chain 324 
determines its last set of dimension memory address offset 
values . Using two step incrementer chains in this way can 
significantly improve the throughput and efficiency of the 
DMA threads , especially for small tensors . For example , if 
it only takes the request generator three clock cycles to 
determine all of the memory addresses for the tensor , using 
a clock cycle to re - initialize a single step incrementer chain 
between tensors results in a 25 % decrease in the throughput 
( e.g. , the number of memory operations performed per unit 
time ) . 
[ 0075 ] When switching between step incrementer chains 
322 and 324 , the FSM can control a set of multiplexers 
332-338 to select which step incrementer chain's output is 
sent to the memory address computation units via a register 
342. For example , the FSM can select the top lane of each 
multiplexer 332-338 when the incrementer chain 322 is 
active and the bottom lane of each multiplexer 332-338 
when the increment chain 324 is active . 

[ 0076 ] As described above with reference to FIG . 2B , each 
lane 201-204 includes a step tracker that can be imple 
mented as the step tracker 300. In this example , the step 
tracker 300 is for lane ( ) and outputs the four dimension 
memory address offset values for lane 0 . 
[ 0077 ] Although not shown , each step tracker 300 can also 
output the next step index values used to determine the 
dimension memory address offset values . These next step 
index values are input back to the step tracker 300 for use in 
determining the subsequent step index values and dimension 
memory address offset values . That is , the step incrementer 
chain 324 can determine the step index values for each 
dimension and the dimension memory address offset value 
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for each dimension . These values can be fed back to the step 
incrementer chain 324 as the current values that will be used 
to determine the next values . 
[ 0078 ] The step tracker 300 can also include multiplexers 
for the step index values that receives , for each dimension , 
a step index value from both step incrementer chains 322 
and 324 , similar to how the multiplexers 322-338 receive 
dimension memory address offset values from both step 
incrementer chains 322 and 324. The output of these mul 
tiplexers can be fed into the step incrementer chain 324 for 
use in determining subsequent step index values . 
[ 0079 ] While the step incrementer chain 324 computes the 
dimension memory address offset values for the current 
descriptor , the step incrementer chain 322 can determine the 
dimension memory address offset values for the first set of 
memory addresses for the next descriptor using the initial 
ized state . However , the FSM can control the multiplexers 
332-338 to pass the dimension memory address offset values 
received from the step incrementer chain 324. When the 
current descriptor is completed , the FSM can control the 
multiplexers 332-338 to pass the dimension memory address 
offset values computed by the step incrementer chain 322 for 
one cycle , which would include the values for the first four 
tensor elements of the next tensor . The FSM can also control 
the multiplexers for the step index values to pass the step 
index values from the step incrementer 322 to the step 
incrementer chain 324 for this one cycle . After that , the step 
incrementer chain 324 has the current state of the step index 
values and can determine the dimension memory address 
offset values for the remaining cycles for this descriptor . 
After the first cycle for this descriptor is completed , the FSM 
can control the multiplexers to once again pass the outputs 
of the step incrementer chain 324 . 
[ 0080 ] FIG . 4 is a diagram of an example step incrementer 
chain 400. The step incrementer chain 400 can include a step 
incrementer for each dimension of the largest tensor for 
which the DMA thread is configured to handle . In this 
example , the step incrementer chain 400 includes four step 
incrementers 410-440 for up to four dimensional tensors . 
The example step incrementer chain illustrated in FIG . 4 is 
implemented as a combinational function , similar in style to 
a carry - ripple adder circuit . 
[ 0081 ] Each step incrementer 410-440 can receive a set of 
parameters . The set of parameters for a step incrementer 
410-440 can include the steps - per - stride for the dimension 
corresponding to the step incrementer 410-440 and each step 
comparison value for the dimension that was pre - computed 
by the computation elements 210. The step incrementers 
410-440 can be initialized for each descriptor as these values 
can vary based on the size and shape of the tensor for which 
the DMA transaction is being performed . 
[ 0082 ] Each step incrementer 410-440 can also receive a 
step index value for its dimension and a dimension offset 
value for the dimension . The step index value for the 
dimension can be initialized at zero for the first cycle ( as 
shown by the input values to the step incrementer chain 
322 ) . After the first cycle , the step index value that is 
inputted to the step incrementer 410-440 is the next step 
index value output by the step incrementer 410-440 . As 
described above , the dimension offset value for a dimension 
is the value multiplied by the step index value to determine 
the dimensions memory address offset value . In comparison 
to using the four loops of the pseudocode 280 of FIG . 2B , 
the step incrementer 410 functions similarly to the innermost 

loop of the loop nest . However , rather than increment the 
step index by one for each iteration of the loop , the step 
incrementer 410 increments its step index value based on the 
advance amount received from the FSM . For example , if the 
advance amount is four , the step incrementer 410 would 
increment the step index value for its dimension by four . If 
this increment exceeds the steps - per - stride for the dimen 
sion , then the step incrementer can re - initialize the step 
index value to zero and keep incrementing until it has been 
incremented four times , which can include more than one 
re - initialization . For example , if the steps - per - stride is three 
and the advance amount is four , the step incrementer 410 
would increment from zero to three , reinitialize to zero , 
increment from zero to one after the four increments . 
[ 0083 ] Rather than use stateful iterations , the step incre 
menter 410 can use a combinatorial function that behaves 
similar to a pair of optimized adders . Like an adder , part of 
the step incrementer takes two operands ( “ step 3 index ” and 
“ advance_amount ” ) and produces a sum ( “ step 3 next 
index ” ) and a carry - out ( “ wrap amount ” ) . The functionality 
is similar for the dimension offsets , except that the function 
that computes the next dimension offset does not produce the 
wrap amount output . 
[ 0084 ] The step incrementer 410 can output the wrap 
amount to the step incrementer 420. The wrap amount can 
be equal to the number of times the step index value of the 
step incrementer 410 would have reinitialized in the current 
cycle based on the received advance amount . That is , the 
wrap amount reflects the number of times the four loops 
would have wrapped around based on the advance amount . 
[ 0085 ] For each cycle in which the step incrementers 
410-440 compute their dimension memory address offset 
values , e.g. , during a single clock cycle , the step incrementer 
410 can compute the next step index value for its dimension , 
the wrap amount for the step incrementer 420 , and the 
dimension memory address offset value ( e.g. , the product of 
the next step index value and the dimension offset value for 
the dimension ) . 
[ 0086 ] The step incrementer 420 can use the wrap amount 
received from the step incrementer 410 similar to the way in 
which the step incrementer 420 used the advance amount 
received from the FSM . That is , the wrap amount represents 
the number of times the step index value of the dimension 
corresponding to the step incrementer 420 is to be incre 
mented this cycle . The step incrementer 420 can increment 
its step index value using the wrap amount received from the 
step incrementer 410 to determine the next step index value . 
The step incrementer 420 can also determine its dimension 
memory address offset value using the next step index value 
( e.g. , the product of the next step index value and the stride 
dimension offset value for the dimension ) . 
[ 0087 ] Similar to the step incrementer 410 , the step incre 
menter 420 can also compute and output a wrap amount to 
the step incrementer 430. The wrap amount can be equal to 
the number of times the step index value of the step 
incrementer 420 was reinitialized in the current cycle based 
on the received wrap amount from the step incrementer 410 . 
That is , the wrap amount reflects the number of times the 
four loops would have wrapped around based on the 
received wrap amount . 
[ 0088 ] The step incrementer 430 can use the wrap amount 
received from the step incrementer 420 in a similar manner . 
That is , the wrap amount represents the number of times the 
step index value of the dimension corresponding to the step 
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incrementer 430 is to be incremented this cycle . The step 
incrementer 430 can increment its step index value using the 
wrap amount received from the step incrementer 420 to 
determine the next step index value . The step incrementer 
430 can also determine its dimension memory address offset 
value using the next step index value ( e.g. , the product of the 
next step index value and the stride dimension offset value 
for the dimension ) . 
[ 0089 ) Similar to the step incrementer 420 , the step incre 
menter 430 can also compute and output a wrap amount to 
the step incrementer 440. The wrap amount can be equal to 
the number of times the step index value of the step 
incrementer 430 was reinitialized in the current cycle based 
on the received wrap amount from the step incrementer 420 . 
That is , the wrap amount reflects the number of times the 
four loops would have wrapped around based on the 
received wrap amount . 
[ 0090 ] The step incrementer 440 can use the wrap amount 
received from the step incrementer 430 in a similar manner . 
That is , the wrap amount represents the number of times the 
step index value of the dimension corresponding to the step 
incrementer 440 is to be incremented this cycle . The step 
incrementer 440 can increment its step index value using the 
wrap amount received from the step incrementer 430 to 
determine the next step index value . The step incrementer 
440 can also determine its dimension memory address offset 
value using the next step index value ( e.g. , the product of the 
next step index value and the stride dimension offset value 
for the dimension ) . 
[ 0091 ] For each cycle in which the step incrementers 
410-440 compute their dimension memory address offset 
values , e.g. , during a single clock cycle , the step increment 
ers 410-440 can each compute the next step index value for 
its dimension , the wrap amount for the next step incrementer 
( if appropriate ) , and the dimension memory address offset 
value ( e.g. , the product of the next step index value and the 
stride dimension offset value for the dimension ) . 
[ 0092 ] In some implementations , each incrementer 410 
440 can use a set of criteria in determining the next step 
index value for its dimension and / or the wrap amount for its 
dimension . This criteria can include the increment amount 
( e.g. , the advance amount for incrementer 410 or the wrap 
amount for the incrementers 420-440 ) . The criteria can also 
include the steps per stride for the dimension , and a com 
parison of the current step index value to a step comparison 
value . 
[ 0093 ] For example , a table , e.g. , a lookup table , can be 
generated that specifies what the next step index value will 
be and the wrap amount will be for each particular combi 
nation of increment amount , steps per stride , and which step 
comparison value the current step index value matches . The 
particular combinations can differ based on the number of 
dimensions of the tensors for which the request generator 
can generate memory addresses . In this way , each step 
incrementer 410-440 can simply compare the increment 
amount and current step index value to the table to determine 
what the next step index value and wrap amount will be . 
( 0094 ] FIG . 5 is a diagram of example progress tracker 
500 , which can be used to implement each of the progress 
trackers 134 and 144 of FIG . 2A . The progress tracker 500 
includes a progress tracker queue 510 , a response reorder 
unit 520 and a synchronization unit 530 . 
[ 0095 ] The progress tracker queue 510 can receive 
descriptors ( or the relevant part of descriptors that it needs 

to handle responses and synchronization ) from a descriptor 
and store the descriptors . The descriptors enable the syn 
chronization unit 530 to determine the progress of the DMA 
transactions defined by the descriptors , as described below . 
[ 0096 ] The response reorder unit 520 can receive 
responses received from a memory system , e.g. , the memory 
system 150 of FIG . 1. Each response can specify a request 
ID of a request that corresponds to the response . That is , the 
memory system can send , to the progress tracker 500 , a 
response to each completed request received from the 
request generator that corresponds to the progress tracker 
500 . 
[ 0097 ] The response reorder unit 520 can receive the 
responses in any order and reorder the responses based on 
their request IDs . The memory system can process requests 
in different orders then the order in which the requests are 
received . For example , the memory system can use band 
width optimization techniques to prioritize some requests 
over other requests . In view of this , the response reorder unit 
520 can be configured to receive out of order responses and 
reorder the responses to track the progress of the memory 
operations being completed by the memory system . An 
example response reorder unit is illustrated in FIG . 6 and 
described in more detail below . 
[ 0098 ] The synchronization unit 530 can receive progress 
data from the response reorder unit and send synchroniza 
tion messages to the core , e.g. , to the core 110 of FIG . 1. For 
example , the synchronization unit 530 can receive , from the 
response reorder unit 520 , data specifying a number of in 
order request IDs have been received . The synchronization 
unit 530 can be configured to send a synchronization mes 
sage each time at least a threshold amount ( or threshold 
percentage ) of the memory operations defined by the 
descriptor have been completed . For example , the synchro 
nization unit 530 can determine a total number of memory 
operations ( e.g. , read or write depending on the subthread ) 
to be performed for the current descriptor . The synchroni 
zation update unit 530 can be configured to send a synchro 
nization message to the core each time at least 10 % of the 
memory operations have been completed . As described 
above , the core can use these partial updates to start con 
suming the transferred data without waiting for all of the 
memory operations defined by a descriptor to be completed . 
[ 0099 ] The response reorder unit 520 and / or the synchro 
nization unit 530 can be configured to notify the request 
generator of a set of request IDs can be reused by the request 
generator . For example , each time at least a threshold 
number of in order request IDs have been received in 
responses from the memory system , these request IDs can be 
released to the response generator for reuse . This enables the 
request generator to continue generating requests after the 
request generator has sent the maximum number of requests 
that can be handled by the progress tracker 500 , but before 
all the requests have been completed . 
[ 0100 ] For example , assume that the progress tracker 500 
includes a response reorder buffer that can only track 500 
memory operations at one time and the request IDs are 
0-499 . If all 500 memory operations have been used in 
requests and none of the requests have been responded to , 
the request generator has to stall until it receives a notifi 
cation from the progress tracker 500 specifying available 
request IDs . If the progress tracker 500 receives responses 
for request IDs 0-15 ( but not for all of the identifiers ) and the 
threshold is less than 15 , the progress tracker 500 can send 
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pop count 

a notification ( e.g. , a request ID credit return message ) 
specifying that the request generator can resume sending 
requests using request IDs 0-15 without waiting for all 500 
memory operations to be completed . 
[ 0101 ] FIG . 6 is a diagram of an example response reorder 
unit 600 , which can be used to implement the response 
reorder unit 520 of FIG . 5. The response reorder unit 600 
includes a response vector 610 and a reorder vector 630 , 
each of which can be implemented using a bit - vector reg 
ister . The response vector 610 and the reorder vector 630 can 
each include a bit for each request ID that can be issued by 
the request generator . This bit can indicate the status of the 
request ID . For example , if the bit has a value of zero , the 
response for the memory operation has not been received . If 
the bit has a value of one , a response for the memory 
operation has been received . The response vector 610 , the 
reorder vector 630 , and a pop vector ( described below ) can 
all be the same size , e.g. , include the same number of bits . 
[ 0102 ] The response vector 610 can be configured to 
receive multiple responses at a time , e.g. , up to four 
responses at a time in this example . For example , the 
response vector 610 can be configured to receive a number 
of simultaneous responses that matches the number of lanes 
of the corresponding request generator . In other examples , 
the response vector 610 can be configured to receive a 
number of simultaneous responses that differs from the 
number of lanes of the corresponding request generator , e.g. , 
that is more than the number of lanes . 
[ 0103 ] The bits in the reorder vector 630 can be arranged 
in order by the request IDs . At the input of the reorder vector 
630 is a logical OR gate 624. The OR gate 624 can be a 
bit - vector OR gate that includes an OR gate for each bit of 
the reorder vector 630. For each request ID , the bit of the 
response vector for the request ID and a bit for the request 
ID output by an AND gate 622 ( e.g. , a bit - vector AND gate ) 
can be the input to an OR gate to determine the value of the 
bit for the request ID in the reorder vector 630 . 
[ 0104 ] This AND gate 622 has a pair of inputs for each 
request ID , and thus each bit of the reorder vector 630. For 
a given request ID , if the bit in the reorder vector 630 and 

bit for the request ID in a pop vector maintained by 
pop vector logic 640 both have a value of one , the output of 
the AND gate is a one for the given request ID . As described 
below , the pop bit for a memory address can be set to one 
to clear the bit back to a value of zero , e.g. , when the request 
ID is released for use by the request generator . That is , if the 
response for the request ID is received and the request ID 
has not yet been released , the output of the AND gate 622 
for the bit corresponding to the request ID would be a one . 
If the request ID has been released , the output of the AND 
gate 622 for the bit would be a zero as the input from the pop 
vector would be a one . 
[ 0105 ] The response reorder unit 600 also includes head 
pointer logic 650 , the pop vector logic 640 , and internal pop 
count logic 660. The head pointer logic 650 can maintain a 
pointer at the next bit after the bit in the reorder vector 630 
for the highest in order request ID for which a response has 
been received . The in order request IDs can start at the first 
request ID and extend through each sequential request ID for 
which a response has been received until it reaches a request 
ID for which a response has not been received . For example , 
if the request IDs include 0-499 and responses have been 
received for 0-8 , 11 , 56 , and 61-78 , the in order request IDs 
would be 0-8 . In this example , the head pointer would point 

to the bit for request ID 9. Once responses are received for 
request IDs 9 and 10 , the in order request IDs would be ( -11 , 
assuming a response has not yet been received for request ID 
12 . 
[ 0106 ] The head pointer logic 650 can also precompute 
additional head pointers , such as head pointer plus one ( e.g. , 
the next bit after the bit to which the head pointer is pointing , 
head pointer plus two , and so on . In this way , the 
logic 660 can pop more than one bit in the reorder vector 630 
during a single clock cycle . This is an optional feature that 
can be used to meet the timing of a given clock frequency . 
The logic complexity grows substantially for a large reorder 
vector with many responses per cycle . This precomputation 
can be used when the target frequency is relatively fast or 
when there are many responses per cycle ( e.g. , many lanes ) . 
[ 0107 ] The internal pop count logic 660 can monitor the 
bits in the reorder vector 630 to determine how many bits of 
the reorder vector can be popped ( e.g. , cleared ) when the 
head pointer moves . For example , the internal pop count 
logic 660 can look ahead at any strings of bits with a value 
of one indicating that a response has been received for the 
memory operations corresponding to the bits . When the head 
pointer logic 650 moves to another bit , the head pointer logic 
630 can provide the location ( e.g. , the bit ) to where the head 
pointer is moving ( e.g. , head_plus_i_next ) . Based on the 
new position of the head pointer and the monitored bits , the 
internal pop count logic 660 can determine how many bits 
can be popped , e.g. , up to a maximum number of pops per 
clock cycle . For example , if the head pointer can move up 
ten bits and the maximum number of pops is four bits per 
clock cycle , the internal pop count logic 660 can instruct the 
pop vector logic 640 to pop four bits a first cycle , four bits 
a second cycle , and two bits a third cycle . The head pointer 
will increment by the same number of entries that are 
popped that cycle , so in this example it can advance by up 
to four per cycle . 
[ 0108 ] The pop vector logic 640 can maintain a pop vector 
of the bits that are to be popped and provide this pop vector 
as an input to the AND gate 622. The pop vector logic 640 
can determine which bits to pop based on the head pointer 
and the additional head pointers and the number of bits to 
pop received from the internal pop count logic 660. For 
example , if the number of bits to pop is four , the pop vector 
logic 640 can pop the bits from the current head pointer to 
head pointer plus four . As the value of head pointer plus four 
is already computed , the pop vector logic 640 does not have 
to consume clock cycles to determine the location of the bits 

a pop 

to pop 
[ 0109 ] The head pointer logic 650 can also receive , from 
the pop count logic , the number of bits to be popped . The 
head pointer logic 650 can update the head pointer and 
precompute the additional head pointers based on the num 
ber of bits to be popped . 
[ 0110 ] The response reorder unit 600 also includes an in 
order items register 672 and computation elements 670 and 
674. The in order items register 672 can maintain a count of 
the number of in order items that have been popped , but that 
have not yet been released to the request generator . To do so , 
the computation unit 670 aggregates the number of bits that 
have been popped based on the output of the internal pop 
count logic 660 . 
[ 0111 ] The number of in order items in the register 672 is 
also sent to the synchronization unit 530. The synchroniza 
tion unit 530 can determine , based on the number of in order 
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or more 

one or more 

items that have been popped , when to release request IDs to 
the request generator . For example , the synchronization unit 
can send data specifying a quantity of request IDs that can 
be used by the request generator , e.g. , the request ID credit 
return ) . The computation unit 674 can subtract this number 
from the number of in order items currently in the register 
672 and update the register with the result ( plus any newly 
popped items from the internal pop count logic 660 ) . For 
example , if the register 672 indicates that there have been 15 
in order items popped and the synchronization unit 530 
releases 10 to the request generator , the computation ele 
ment 674 can subtract the 10 released request IDs from the 
15 request IDs and store and update value of five request 
IDs . In this way , the register 272 stores a running count of 
the number of request IDs that can be released to the request 
generator . 
[ 0112 ] FIG . 7 is a flow diagram that illustrates an example 
process 700 for generating requests for memory operations . 
The process 700 can be performed by a request generator , 
e.g. , the request generator 132 or 142 of FIG . 1 , or the 
request generator 200 of FIG . 2 . 
[ 0113 ] The request generator receives one 
descriptors ( 702 ) . Each descriptor includes information 
about a DMA transaction , e.g. , a set of memory transfer 
operations . For example , a descriptor can include informa 
tion specifying source memory from which data will be read , 
destination memory to which the data will be written , the 
size and shape ( e.g. , the dimensions ) of a source tensor for 
which tensor elements are stored in the source memory , a 
size and shape of a destination tensor for which tensor 
elements will be stored in the destination memory , and a 
stride dimension offset value for each dimension . 
[ 0114 ] The request generator initializes step trackers 
( 704 ) . As described above , the request generator can include 
multiple lanes that each compute a memory address in 
parallel , e.g. , per clock cycle . Each lane can include a step 
tracker and a memory address computation unit . Each step 
tracker can include a step incrementer chain . Initializing the 
step tracker can include providing step parameters to each 
step incrementer and initializing the step index value for 
each step incrementer . 
[ 0115 ] The request generator generates memory addresses 
( 706 ) . For example , the request generator can use the 
multiple lanes to compute multiple memory addresses in 
parallel , e.g. , during a single clock cycle . In particular , 
during a clock cycle , each step tracker can compute a next 
step index value for each dimension of the tensor ( which 
corresponds to a particular tensor element in the tensor ) and 
compute a dimension memory address offset value for each 
dimension using the next step index value for the dimension 
and the stride dimension offset value for the dimension . The 
memory address computation unit of each lane can then 
compute a memory address based on the dimension memory 
address offset value for each dimension output by the step 
tracker on the lane and a base address . For example , the 
memory address for a lane ( and therefore a tensor element ) 
can be the sum of the base address and the dimension 
memory address offset values . 
[ 0116 ] The request generator generates and sends requests 
to a memory system ( 708 ) . The requests can be read requests 
or write requests . Each request can specify a request ID and 
a memory address computed during this cycle . That is , the 
request generator can generate and send a respective request 
for each computer memory address . The request generator 

can send the requests to a memory system that performs the 
read or write operation using the memory address in the 
request . 
[ 0117 ] The request generator determines whether there are 
more tensor elements for which to compute a memory 
address ( 710 ) . For example , as described above , an FSM can 
track the number of requests remaining to be generated for 
a descriptor . If there are more tensor elements , the process 
700 returns to step 706 to generate more memory addresses . 
[ 0118 ] If there are no additional tensor elements , the 
request generator determines whether there are additional 
descriptors for which to perform DMA transactions ( 714 ) . 
For example , the request generator can check a descriptor 
queue to determine whether there are any additional descrip 
tors in the queue . If not , the process ends . If so , the process 
returns to step 704 , where the step trackers are initialized for 
the next descriptor . As described above , the step trackers can 
be initialized prior to the completion of the DMA transaction 
for a previous descriptor . 
[ 0119 ] FIG . 8 is a flow diagram that illustrates an example 
process 800 for tracking the progress of memory operations . 
The process 800 can be performed by a progress tracker , 
e.g. , the progress tracker 134 or 144 of FIG . 1 , or the 
progress tracker 500 of FIG . 5 . 
( 0120 ] The progress tracker receives 
responses ( 802 ) . For example , a memory system can send a 
response to the progress tracked in response to completing 
a memory operation . The response can specify the request 
ID for the completed memory operation . 
[ 0121 ] The progress tracker updates a reorder vector 
( 804 ) . The progress tracker can update the reorder vector to 
indicate that the memory operation corresponding to the 
request ID has been completed . For example , the progress 
tracker can update a bit for the request ID from a value of 
zero to a value of one to indicate that the memory operation 
corresponding to the request ID has been completed . 
[ 0122 ] The progress tracker determines whether a number 
of consecutive elements ( e.g. , bits for request IDs ) is greater 
than or equal to a threshold ( 806 ) . If so , the progress tracker 
can release the request IDs for reuse by a request generator 
( 808 ) . If not , the process 800 continues to step 810 without 
releasing any request IDs . 
[ 0123 ] In step 810 , the progress tracker determines 
whether a number of responses received is greater than or 
equal to a threshold . This number can be a number of 
responses received since a previous synchronization mes 
sage was sent to a core for which the memory operations are 
being performed . In another example , the progress tracker 
can determine whether at least a threshold percentage of the 
total number of responses to be received have been received . 
[ 0124 ] In either example , if the threshold has been reached 
or exceeded , the progress tracker can synchronize with the 
core ( 812 ) . For example , the progress tracker can send , to 
the core , a synchronization message that indicates the total 
number or total percentage of responses received . In another 
example , the progress tracker can send , to the core , 
synchronization message that indicates a number of 
responses received since a previous synchronization mes 
sage was sent to the core . 
[ 0125 ] If the threshold has not been reached , the process 
800 continues to step 814. In step 814 , the progress tracker 
determines whether all responses have been received for a 
descriptor . If not , the process 800 returns to step 802 , in 
which more responses are received . If so , the progress 

a 
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tracker can synchronize with the core 816 , e.g. , by sending 
a synchronization message indicating that all of the memory 
operations for the descriptor have been completed . 
[ 0126 ] While this specification contains many specific 
implementation details , these should not be construed as 
limitations on the scope of any inventions or of what may be 
claimed , but rather as descriptions of features specific to 
particular embodiments of particular inventions . Certain 
features that are described in this specification in the context 
of separate embodiments can also be implemented in com 
bination in a single embodiment . Conversely , various fea 
tures that are described in the context of a single embodi 
ment can also be implemented in multiple embodiments 
separately or in any suitable subcombination . Moreover , 
although features may be described above as acting in 
certain combinations and even initially claimed as such , one 
or more features from a claimed combination can in some 
cases be excised from the combination , and the claimed 
combination may be directed to a subcombination or varia 
tion of a subcombination . 
[ 0127 ] Similarly , while operations are depicted in the 
drawings in a particular order , this should not be understood 
as requiring that such operations be performed in the par 
ticular order shown or in sequential order , or that all illus 
trated operations be performed , to achieve desirable results . 
In certain circumstances , multitasking and parallel process 
ing may be advantageous . Moreover , the separation of 
various system components in the embodiments described 
above should not be understood as requiring such separation 
in all embodiments , and it should be understood that the 
described program components and systems can generally 
be integrated together in a single software product or pack 
aged into multiple software products . 
[ 0128 ] Thus , particular embodiments of the subject matter 
have been described . 
[ 0129 ] Other embodiments are within the scope of the 
following claims . In some cases , the actions recited in the 
claims can be performed in a different order and still achieve 
desirable results . In addition , the processes depicted in the 
accompanying figures do not necessarily require the par 
ticular order shown , or sequential order , to achieve desirable 
results . In certain implementations , multitasking and parallel 
processing may be advantageous . 
What is claimed is : 
1. A direct memory access ( DMA ) system , comprising : 
one or more hardware DMA threads , wherein each DMA 

thread comprises : 
a request generator configured to generate , during each 

parallel memory address computation cycle , ( i ) m 
memory addresses for a multi - dimensional tensor in 
parallel and , for each memory address , ( ii ) a respec 
tive request for a memory system to perform a 
memory operation for the multi - dimensional tensor , 
wherein the request generator comprises m memory 
address units , and wherein each memory address unit 
comprises : 
a step tracker configured to generate , for each dimen 

sion of the multi - dimensional tensor , ( i ) a respec 
tive step index value for the dimension and , based 
on the respective step index value , ( ii ) a respective 
stride offset value for the dimension ; and 

a memory address computation element configured 

generate , during each parallel memory address 
computation cycle and based on each respective 
stride offset value , a memory address for a 
tensor element of the multi - dimensional tensor ; 
and 

transmit , to the memory system , the request to 
perform the memory operation using the 
memory address ; 

wherein m is greater than or equal to one . 
2. The DMA system of claim 1 , wherein the request 

generator is configured to generate the memory addresses in 
parallel during a single clock cycle and each parallel 
memory computation is performed during a single clock 
cycle . 

3. The DMA system of claim 2 , wherein , during each 
clock cycle , the memory address computation element of 
each memory address unit generates a memory address for 
a same or different tensor element than the memory address 
computation element of each other memory address unit . 

4. The DMA system of claim 1 , wherein the request 
generator is configured to receive , for the multi - dimensional 
tensor , a descriptor that defines , for each dimension , a 
respective steps for stride value for the dimension . 

5. The DMA system of claim 1 , wherein the request 
generator includes m lanes that each include a respective 
step tracker and a respective memory address computation 
element , wherein the respective step tracker and respective 
memory address computation element of each lane com 
putes a corresponding memory address in parallel with each 
other lane . 

6. The DMA system of claim 5 , wherein : 
the step trackers are configured to generate the memory 

addresses for the multi - dimensional tensor based on a 
loop nest that includes , for each dimension of the 
multi - dimensional tensor , a respective loop for travers 
ing the dimension of the multi - dimensional tensor ; and 

the steps per stride value for each dimension represents a 
loop bound for the respective loop for the dimension 
and the step index value for each dimension represents 
a loop index for the respective loop for the dimension . 

7. The DMA system of claim 6 , wherein each step tracker 
is configured to update the step index value for each of the 
dimensions during each clock cycle . 

8. The DMA system of claim 6 , wherein a combination of 
the step index values for each step tracker is different from 
a combination of the step index values for each other step 
tracker . 

9. The DMA system of claim 8 , wherein : 
each step tracker comprises a step incrementer chain 

comprising plurality of step incrementers each config 
ured to determine a dimension memory address offset 
value for a respective dimension : 

a first step incrementer of the step incrementer chain 
corresponding to an innermost loop of the loop nest is 
configured to receive an advance amount ; and 

updating the step index value for one or more of the 
dimensions during each clock cycle comprises updat 
ing , by the first step incrementer , the step index value 
for the one or more dimensions based on the advance 
amount . 

10. The DMA system of claim 9 , wherein : 
each of one or more second step incrementers of the step 

incrementer chain corresponding to a loop in which the to : 
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innermost loop is nested is configured to receive , from 
a previous step tracker in the step incrementer chain , a 
wrap amount ; and 

updating the step index value for one or more of the 
dimensions during each clock cycle comprises updat 
ing , by the second step incrementer , the step index 
value for the one or more dimensions based on the wrap 
amount . 

11. The DMA system of claim 1 , further comprising a 
progress tracker comprising a response reorder unit and a 
synchronization unit . 

12. The DMA system of claim 11 , wherein the response 
reorder unit is configured to maintain , for each tensor , a 
status of whether a memory operation for the tensor element 
has been performed . 

13. The DMA system of claim 11 , wherein the synchro 
nization unit is configured to provide , to a processor core , 
multiple partial updates that each specify an overall status of 
memory operations performed on the tensor elements of the 
multi - dimensional tensor . 

14. The DMA system of claim 11 , wherein : 
each request comprises a unique identifier ; 
the response reorder unit is configured to : 

receive responses from the memory system in any 
order , each response comprising the unique identifier 
of the request for which the response is provided ; 
and 

release a set of unique identifiers for re - use by the 
request generator when at least a threshold number 
of consecutive unique identifiers are received in the 
responses . 

15. A system , comprising : 
one or more processor cores ; 
a memory system ; and 
a DMA engine comprising one or more DMA threads , 

wherein each DMA thread comprises : 
a request generator configured to generate , during each 

parallel memory address computation cycle , ( i ) m 
memory addresses for a multi - dimensional tensor in 
parallel and , for each memory address , ( ii ) a respec 
tive request for a memory system to perform a 
memory operation for the multi - dimensional tensor , 
wherein the request generator comprises m memory 
address units , wherein m is greater than or equal to 
one , and wherein each memory address unit com 
prises : 
a step tracker configured to generate , for each dimen 

sion of the multi - dimensional tensor , ( i ) a respec 
tive step index value for the dimension and , based 
on the respective step index value , ( ii ) a respective 
stride offset value for the dimension ; and 

a memory address computation element configured 

stride offset value , a memory address for a 
tensor element of the multi - dimensional tensor ; 
and 

transmit , to the memory system , the request to 
perform the memory operation using the 
memory address ; and 

a progress tracker comprising a response reorder unit and 
a synchronization update unit configured to provide , to 
the one or more processor core , partial synchronization 
updates for memory operations managed by the DMA 
engine . 

16. The system of claim 15 , wherein the request generator 
is configured to generate the memory addresses in parallel 
during a single clock cycle and each parallel memory 
computation is performed during a single clock cycle . 

17. The system of claim 16 , wherein , during each clock 
cycle , the memory address computation element of each 
memory address unit generates a memory address for a same 
or different tensor element than the memory address com 
putation element of each other memory address unit . 

18. The system of claim 15 , wherein the request generator 
is configured to receive , for the multi - dimensional tensor , a 
descriptor that defines , for each dimension , a respective 
steps for stride value for the dimension . 

19. The system of claim 15 , wherein the request generator 
includes m lanes that each include a respective step tracker 
and a respective memory address computation element , 
wherein the respective step tracker and respective memory 
address computation element of each lane computes a cor 
responding memory address in parallel with each other lane . 

20. A method performed by a DMA system , the method 
comprising : 

generating , by a request generator and during each par 
allel memory address computation cycle , ( i ) m memory 
addresses for a multi - dimensional tensor in parallel 
and , for each memory address , ( ii ) a respective request 
for a memory system to perform a memory operation 
for the multi - dimensional tensor , wherein the request 
generator comprises m memory address units , wherein 
m is greater than or equal to one , and wherein each 
memory address unit comprises a step tracker and a 
memory address computation unit ; 

generating , by the step tracker of each memory address 
unit and for each dimension of the multi - dimensional 
tensor , ( i ) a respective step index value for the dimen 
sion and , based on the respective step index value , ( ii ) 
a respective stride offset value for the dimension ; 

generating , by the memory address computation element 
of each memory address unit and during each parallel 
memory address computation cycle , a memory address 
for a tensor element of the multi - dimensional tensor 
based on each respective stride offset value ; and 

transmitting , to the memory system , the request to per 
form the memory operation using the memory address . 

to : 

generate , during each parallel memory address 
computation cycle and based on each respective * 


